Hyperspectral image compression using entropy-constrained predictive trellis coded quantization

A training-sequence-based entropy-constrained predictive trellis coded quantization (ECPTCQ) scheme is presented for encoding autoregressive sources. For encoding a first-order Gauss-Markov source, the mean squared error (MSE) performance of an eight-state ECPTCQ system exceeds that of entropy-const...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 6(1997), 4 vom: 15., Seite 566-73
1. Verfasser: Abousleman, G P (VerfasserIn)
Weitere Verfasser: Marcellin, M W, Hunt, B R
Format: Aufsatz
Sprache:English
Veröffentlicht: 1997
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:A training-sequence-based entropy-constrained predictive trellis coded quantization (ECPTCQ) scheme is presented for encoding autoregressive sources. For encoding a first-order Gauss-Markov source, the mean squared error (MSE) performance of an eight-state ECPTCQ system exceeds that of entropy-constrained differential pulse code modulation (ECDPCM) by up to 1.0 dB. In addition, a hyperspectral image compression system is developed, which utilizes ECPTCQ. A hyperspectral image sequence compressed at 0.125 b/pixel/band retains an average peak signal-to-noise ratio (PSNR) of greater than 43 dB over the spectral bands
Beschreibung:Date Completed 02.10.2012
Date Revised 19.02.2008
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1057-7149