Hyperspectral image compression using entropy-constrained predictive trellis coded quantization
A training-sequence-based entropy-constrained predictive trellis coded quantization (ECPTCQ) scheme is presented for encoding autoregressive sources. For encoding a first-order Gauss-Markov source, the mean squared error (MSE) performance of an eight-state ECPTCQ system exceeds that of entropy-const...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 6(1997), 4 vom: 15., Seite 566-73 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
1997
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Zusammenfassung: | A training-sequence-based entropy-constrained predictive trellis coded quantization (ECPTCQ) scheme is presented for encoding autoregressive sources. For encoding a first-order Gauss-Markov source, the mean squared error (MSE) performance of an eight-state ECPTCQ system exceeds that of entropy-constrained differential pulse code modulation (ECDPCM) by up to 1.0 dB. In addition, a hyperspectral image compression system is developed, which utilizes ECPTCQ. A hyperspectral image sequence compressed at 0.125 b/pixel/band retains an average peak signal-to-noise ratio (PSNR) of greater than 43 dB over the spectral bands |
---|---|
Beschreibung: | Date Completed 02.10.2012 Date Revised 19.02.2008 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1057-7149 |