Multiscale segmentation and anomaly enhancement of SAR imagery

We present efficient multiscale approaches to the segmentation of natural clutter, specifically grass and forest, and to the enhancement of anomalies in synthetic aperture radar (SAR) imagery. The methods we propose exploit the coherent nature of SAR sensors. In particular, they take advantage of th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 6(1997), 1 vom: 15., Seite 7-20
1. Verfasser: Fosgate, C H (VerfasserIn)
Weitere Verfasser: Krim, H, Irving, W W, Karl, W C, Willsky, A S
Format: Aufsatz
Sprache:English
Veröffentlicht: 1997
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177695331
003 DE-627
005 20250209060228.0
007 tu
008 231223s1997 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0592.xml 
035 |a (DE-627)NLM177695331 
035 |a (NLM)18282875 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fosgate, C H  |e verfasserin  |4 aut 
245 1 0 |a Multiscale segmentation and anomaly enhancement of SAR imagery 
264 1 |c 1997 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 19.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present efficient multiscale approaches to the segmentation of natural clutter, specifically grass and forest, and to the enhancement of anomalies in synthetic aperture radar (SAR) imagery. The methods we propose exploit the coherent nature of SAR sensors. In particular, they take advantage of the characteristic statistical differences in imagery of different terrain types, as a function of scale, due to radar speckle. We employ a class of multiscale stochastic processes that provide a powerful framework for describing random processes and fields that evolve in scale. We build models representative of each category of terrain of interest (i.e., grass and forest) and employ them in directing decisions on pixel classification, segmentation, and anomalous behaviour. The scale-autoregressive nature of our models allows extremely efficient calculation of likelihoods for different terrain classifications over windows of SAR imagery. We subsequently use these likelihoods as the basis for both image pixel classification and grass-forest boundary estimation. In addition, anomaly enhancement is possible with minimal additional computation. Specifically, the residuals produced by our models in predicting SAR imagery from coarser scale images are theoretically uncorrelated. As a result, potentially anomalous pixels and regions are enhanced and pinpointed by noting regions whose residuals display a high level of correlation throughout scale. We evaluate the performance of our techniques through testing on 0.3-m resolution SAR data gathered with Lincoln Laboratory's millimeter-wave SAR 
650 4 |a Journal Article 
700 1 |a Krim, H  |e verfasserin  |4 aut 
700 1 |a Irving, W W  |e verfasserin  |4 aut 
700 1 |a Karl, W C  |e verfasserin  |4 aut 
700 1 |a Willsky, A S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 6(1997), 1 vom: 15., Seite 7-20  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:6  |g year:1997  |g number:1  |g day:15  |g pages:7-20 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 6  |j 1997  |e 1  |b 15  |h 7-20