Robust foreground detection in video using pixel layers

A framework for robust foreground detection that works under difficult conditions such as dynamic background and moderately moving camera is presented in this paper. The proposed method includes two main components: coarse scene representation as the union of pixel layers, and foreground detection i...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 30(2008), 4 vom: 15. Apr., Seite 746-51
1. Verfasser: Patwardhan, Kedar A (VerfasserIn)
Weitere Verfasser: Sapiro, Guillermo, Morellas, Vassilios
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Evaluation Study Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM177639105
003 DE-627
005 20231223150632.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2007.70843  |2 doi 
028 5 2 |a pubmed24n0592.xml 
035 |a (DE-627)NLM177639105 
035 |a (NLM)18276979 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Patwardhan, Kedar A  |e verfasserin  |4 aut 
245 1 0 |a Robust foreground detection in video using pixel layers 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.04.2008 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a A framework for robust foreground detection that works under difficult conditions such as dynamic background and moderately moving camera is presented in this paper. The proposed method includes two main components: coarse scene representation as the union of pixel layers, and foreground detection in video by propagating these layers using a maximum-likelihood assignment. We first cluster into "layers" those pixels that share similar statistics. The entire scene is then modeled as the union of such non-parametric layer-models. An in-coming pixel is detected as foreground if it does not adhere to these adaptive models of the background. A principled way of computing thresholds is used to achieve robust detection performance with a pre-specified number of false alarms. Correlation between pixels in the spatial vicinity is exploited to deal with camera motion without precise registration or optical flow. The proposed technique adapts to changes in the scene, and allows to automatically convert persistent foreground objects to background and re-convert them to foreground when they become interesting. This simple framework addresses the important problem of robust foreground and unusual region detection, at about 10 frames per second on a standard laptop computer. The presentation of the proposed approach is complemented by results on challenging real data and comparisons with other standard techniques 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Sapiro, Guillermo  |e verfasserin  |4 aut 
700 1 |a Morellas, Vassilios  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 30(2008), 4 vom: 15. Apr., Seite 746-51  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:30  |g year:2008  |g number:4  |g day:15  |g month:04  |g pages:746-51 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2007.70843  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2008  |e 4  |b 15  |c 04  |h 746-51