Scene classification using a hybrid generative/discriminative approach

We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail we are given a set of labelled images of scenes (e.g. coast, forest, city, river, etc) and our objective is to classify a new image into one...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 30(2008), 4 vom: 15. Apr., Seite 712-27
1. Verfasser: Bosch, Anna (VerfasserIn)
Weitere Verfasser: Zisserman, Andrew, Muñoz, Xavier
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM177639067
003 DE-627
005 20250209055321.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2007.70716  |2 doi 
028 5 2 |a pubmed25n0592.xml 
035 |a (DE-627)NLM177639067 
035 |a (NLM)18276975 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bosch, Anna  |e verfasserin  |4 aut 
245 1 0 |a Scene classification using a hybrid generative/discriminative approach 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.04.2008 
500 |a Date Revised 03.11.2009 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail we are given a set of labelled images of scenes (e.g. coast, forest, city, river, etc) and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent "topics" using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently training a multi-way classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly, and training a multi-way classifier on these vectors. To this end we introduce a novel vocabulary using dense colour SIFT descriptors, and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learnt, and the type of discriminative classifier used (k-nearest neighbour or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases using the authors' own datasets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zisserman, Andrew  |e verfasserin  |4 aut 
700 1 |a Muñoz, Xavier  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 30(2008), 4 vom: 15. Apr., Seite 712-27  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:30  |g year:2008  |g number:4  |g day:15  |g month:04  |g pages:712-27 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2007.70716  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2008  |e 4  |b 15  |c 04  |h 712-27