|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM177639059 |
003 |
DE-627 |
005 |
20231223150632.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2008 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2007.70728
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0592.xml
|
035 |
|
|
|a (DE-627)NLM177639059
|
035 |
|
|
|a (NLM)18276974
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Shan, Ying
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Unsupervised learning of discriminative edge measures for vehicle matching between nonoverlapping cameras
|
264 |
|
1 |
|c 2008
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 23.04.2008
|
500 |
|
|
|a Date Revised 15.02.2008
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a This paper proposes a novel unsupervised algorithm learning discriminative features in the context of matching road vehicles between two non-overlapping cameras. The matching problem is formulated as a same-different classification problem, which aims to compute the probability of vehicle images from two distinct cameras being from the same vehicle or different vehicle(s). We employ a novel measurement vector that consists of three independent edge-based measures and their associated robust measures computed from a pair of aligned vehicle edge maps. The weight of each measure is determined by an unsupervised learning algorithm that optimally separates the same-different classes in the combined measurement space. This is achieved with a weak classification algorithm that automatically collects representative samples from same-different classes, followed by a more discriminative classifier based on Fisher' s Linear Discriminants and Gibbs Sampling. The robustness of the match measures and the use of unsupervised discriminant analysis in the classification ensures that the proposed method performs consistently in the presence of missing/false features, temporally and spatially changing illumination conditions, and systematic misalignment caused by different camera configurations. Extensive experiments based on real data of over 200 vehicles at different times of day demonstrate promising results
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
700 |
1 |
|
|a Sawhney, Harpreet S
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kumar, Rakesh
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 30(2008), 4 vom: 15. Apr., Seite 700-11
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2008
|g number:4
|g day:15
|g month:04
|g pages:700-11
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2007.70728
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2008
|e 4
|b 15
|c 04
|h 700-11
|