Unsupervised learning of discriminative edge measures for vehicle matching between nonoverlapping cameras

This paper proposes a novel unsupervised algorithm learning discriminative features in the context of matching road vehicles between two non-overlapping cameras. The matching problem is formulated as a same-different classification problem, which aims to compute the probability of vehicle images fro...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 30(2008), 4 vom: 15. Apr., Seite 700-11
1. Verfasser: Shan, Ying (VerfasserIn)
Weitere Verfasser: Sawhney, Harpreet S, Kumar, Rakesh
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM177639059
003 DE-627
005 20231223150632.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2007.70728  |2 doi 
028 5 2 |a pubmed24n0592.xml 
035 |a (DE-627)NLM177639059 
035 |a (NLM)18276974 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shan, Ying  |e verfasserin  |4 aut 
245 1 0 |a Unsupervised learning of discriminative edge measures for vehicle matching between nonoverlapping cameras 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.04.2008 
500 |a Date Revised 15.02.2008 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This paper proposes a novel unsupervised algorithm learning discriminative features in the context of matching road vehicles between two non-overlapping cameras. The matching problem is formulated as a same-different classification problem, which aims to compute the probability of vehicle images from two distinct cameras being from the same vehicle or different vehicle(s). We employ a novel measurement vector that consists of three independent edge-based measures and their associated robust measures computed from a pair of aligned vehicle edge maps. The weight of each measure is determined by an unsupervised learning algorithm that optimally separates the same-different classes in the combined measurement space. This is achieved with a weak classification algorithm that automatically collects representative samples from same-different classes, followed by a more discriminative classifier based on Fisher' s Linear Discriminants and Gibbs Sampling. The robustness of the match measures and the use of unsupervised discriminant analysis in the classification ensures that the proposed method performs consistently in the presence of missing/false features, temporally and spatially changing illumination conditions, and systematic misalignment caused by different camera configurations. Extensive experiments based on real data of over 200 vehicles at different times of day demonstrate promising results 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Sawhney, Harpreet S  |e verfasserin  |4 aut 
700 1 |a Kumar, Rakesh  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 30(2008), 4 vom: 15. Apr., Seite 700-11  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:30  |g year:2008  |g number:4  |g day:15  |g month:04  |g pages:700-11 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2007.70728  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2008  |e 4  |b 15  |c 04  |h 700-11