Hole filling of a 3D model by flipping signs of a signed distance field in adaptive resolution

When we use range finders to observe the shape of an object, many occluded areas may occur. These become holes and gaps in the model and make it undesirable for various applications. We propose a novel method to fill holes and gaps to complete this incomplete model. As an intermediate representation...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 30(2008), 4 vom: 15. Apr., Seite 686-99
1. Verfasser: Sagawa, Ryusuke (VerfasserIn)
Weitere Verfasser: Ikeuchi, Katsushi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM177639024
003 DE-627
005 20231223150632.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2007.70726  |2 doi 
028 5 2 |a pubmed24n0592.xml 
035 |a (DE-627)NLM177639024 
035 |a (NLM)18276973 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sagawa, Ryusuke  |e verfasserin  |4 aut 
245 1 0 |a Hole filling of a 3D model by flipping signs of a signed distance field in adaptive resolution 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.04.2008 
500 |a Date Revised 03.11.2009 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a When we use range finders to observe the shape of an object, many occluded areas may occur. These become holes and gaps in the model and make it undesirable for various applications. We propose a novel method to fill holes and gaps to complete this incomplete model. As an intermediate representation, we use a Signed Distance Field (SDF), which stores Euclidean signed distances from a voxel to the nearest point of the mesh model. By using an SDF, we can obtain interpolating surfaces for holes and gaps. The proposed method generates an interpolating surface that becomes smoothly continuous with real surfaces by minimizing the area of the interpolating surface. Since the isosurface of an SDF can be identified as being a real or interpolating surface from the magnitude of signed distances, our method computes the area of an interpolating surface in the neighborhood of a voxel both before and after flipping the sign of the signed distance of the voxel. If the area is reduced by flipping the sign, our method changes the sign for the voxel. Therefore, we minimize the area of the interpolating surface by iterating this computation until convergence. Unlike methods based on Partial Differential Equations (PDE), our method does not require any boundary condition, and the initial state that we use is automatically obtained by computing the distance to the closest point of the real surface. Moreover, because our method can be applied to an SDF of adaptive resolution, our method efficiently interpolates large holes and gaps of high curvature. We tested the proposed method with both synthesized and real objects and evaluated the interpolating surfaces 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Ikeuchi, Katsushi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 30(2008), 4 vom: 15. Apr., Seite 686-99  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:30  |g year:2008  |g number:4  |g day:15  |g month:04  |g pages:686-99 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2007.70726  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2008  |e 4  |b 15  |c 04  |h 686-99