Variational image segmentation using boundary functions

A general variational framework for image approximation and segmentation is introduced. By using a continuous "line-process" to represent edge boundaries, it is possible to formulate a variational theory of image segmentation and approximation in which the boundary function has a simple ex...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 7(1998), 9 vom: 30., Seite 1269-82
1. Verfasser: Hewer, G A (VerfasserIn)
Weitere Verfasser: Kenney, C, Manjunath, B S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1998
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM177632895
003 DE-627
005 20231223150625.0
007 cr uuu---uuuuu
008 231223s1998 xx |||||o 00| ||eng c
024 7 |a 10.1109/83.709660  |2 doi 
028 5 2 |a pubmed24n0592.xml 
035 |a (DE-627)NLM177632895 
035 |a (NLM)18276339 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hewer, G A  |e verfasserin  |4 aut 
245 1 0 |a Variational image segmentation using boundary functions 
264 1 |c 1998 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.06.2010 
500 |a Date Revised 15.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A general variational framework for image approximation and segmentation is introduced. By using a continuous "line-process" to represent edge boundaries, it is possible to formulate a variational theory of image segmentation and approximation in which the boundary function has a simple explicit form in terms of the approximation function. At the same time, this variational framework is general enough to include the most commonly used objective functions. Application is made to Mumford-Shah type functionals as well as those considered by Geman and others. Employing arbitrary Lp norms to measure smoothness and approximation allows the user to alternate between a least squares approach and one based on total variation, depending on the needs of a particular image. Since the optimal boundary function that minimizes the associated objective functional for a given approximation function can be found explicitly, the objective functional can be expressed in a reduced form that depends only on the approximating function. From this a partial differential equation (PDE) descent method, aimed at minimizing the objective functional, is derived. The method is fast and produces excellent results as illustrated by a number of real and synthetic image problems 
650 4 |a Journal Article 
700 1 |a Kenney, C  |e verfasserin  |4 aut 
700 1 |a Manjunath, B S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 7(1998), 9 vom: 30., Seite 1269-82  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:7  |g year:1998  |g number:9  |g day:30  |g pages:1269-82 
856 4 0 |u http://dx.doi.org/10.1109/83.709660  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 7  |j 1998  |e 9  |b 30  |h 1269-82