|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM177632607 |
003 |
DE-627 |
005 |
20250209055231.0 |
007 |
cr uuu---uuuuu |
008 |
231223s1998 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/83.679446
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0592.xml
|
035 |
|
|
|a (DE-627)NLM177632607
|
035 |
|
|
|a (NLM)18276310
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Paget, R
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Texture synthesis via a noncausal nonparametric multiscale Markov random field
|
264 |
|
1 |
|c 1998
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 29.06.2010
|
500 |
|
|
|a Date Revised 15.02.2008
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Our noncausal, nonparametric, multiscale, Markov random field (MRF) model is capable of synthesizing and capturing the characteristics of a wide variety of textures, from the highly structured to the stochastic. We use a multiscale synthesis algorithm incorporating local annealing to obtain larger realizations of texture visually indistinguishable from the training texture
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Longstaff, I D
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 7(1998), 6 vom: 30., Seite 925-31
|w (DE-627)NLM09821456X
|x 1057-7149
|7 nnns
|
773 |
1 |
8 |
|g volume:7
|g year:1998
|g number:6
|g day:30
|g pages:925-31
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/83.679446
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 7
|j 1998
|e 6
|b 30
|h 925-31
|