High-quality image resizing using oblique projection operators

The standard interpolation approach to image resizing is to fit the original picture with a continuous model and resample the function at the desired rate. However, one can obtain more accurate results if one applies a filter prior to sampling, a fact well known from sampling theory. The optimal sol...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 7(1998), 5 vom: 30., Seite 679-92
1. Verfasser: Lee, C (VerfasserIn)
Weitere Verfasser: Eden, M, Unser, M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1998
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM177632348
003 DE-627
005 20231223150624.0
007 cr uuu---uuuuu
008 231223s1998 xx |||||o 00| ||eng c
024 7 |a 10.1109/83.668025  |2 doi 
028 5 2 |a pubmed24n0592.xml 
035 |a (DE-627)NLM177632348 
035 |a (NLM)18276284 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lee, C  |e verfasserin  |4 aut 
245 1 0 |a High-quality image resizing using oblique projection operators 
264 1 |c 1998 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.06.2010 
500 |a Date Revised 15.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The standard interpolation approach to image resizing is to fit the original picture with a continuous model and resample the function at the desired rate. However, one can obtain more accurate results if one applies a filter prior to sampling, a fact well known from sampling theory. The optimal solution corresponds to an orthogonal projection onto the underlying continuous signal space. Unfortunately, the optimal projection prefilter is difficult to implement when sine or high order spline functions are used. We propose to resize the image using an oblique rather than an orthogonal projection operator in order to make use of faster, simpler, and more general algorithms. We show that we can achieve almost the same result as with the orthogonal projection provided that we use the same approximation space. The main advantage is that it becomes perfectly feasible to use higher order models (e.g. splines of degree n=or>3). We develop the theoretical background and present a simple and practical implementation procedure using B-splines. Our experiments show that the proposed algorithm consistently outperforms the standard interpolation methods and that it provides essentially the same performance as the optimal procedure (least squares solution) with considerably fewer computations. The method works for arbitrary scaling factors and is applicable to both image enlargement and reduction 
650 4 |a Journal Article 
700 1 |a Eden, M  |e verfasserin  |4 aut 
700 1 |a Unser, M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 7(1998), 5 vom: 30., Seite 679-92  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:7  |g year:1998  |g number:5  |g day:30  |g pages:679-92 
856 4 0 |u http://dx.doi.org/10.1109/83.668025  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 7  |j 1998  |e 5  |b 30  |h 679-92