Total variation blind deconvolution

In this paper, we present a blind deconvolution algorithm based on the total variational (TV) minimization method proposed. The motivation for regularizing with the TV norm is that it is extremely effective for recovering edges of images as well as some blurring functions, e.g., motion blur and out-...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 7(1998), 3 vom: 30., Seite 370-5
1. Verfasser: Chan, T F (VerfasserIn)
Weitere Verfasser: Wong, C K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1998
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM177632070
003 DE-627
005 20231223150624.0
007 cr uuu---uuuuu
008 231223s1998 xx |||||o 00| ||eng c
024 7 |a 10.1109/83.661187  |2 doi 
028 5 2 |a pubmed24n0592.xml 
035 |a (DE-627)NLM177632070 
035 |a (NLM)18276257 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chan, T F  |e verfasserin  |4 aut 
245 1 0 |a Total variation blind deconvolution 
264 1 |c 1998 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.12.2009 
500 |a Date Revised 15.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we present a blind deconvolution algorithm based on the total variational (TV) minimization method proposed. The motivation for regularizing with the TV norm is that it is extremely effective for recovering edges of images as well as some blurring functions, e.g., motion blur and out-of-focus blur. An alternating minimization (AM)implicit iterative scheme is devised to recover the image and simultaneously identify the point spread function (psf). Numerical results indicate that the iterative scheme is quite robust, converges very fast (especially for discontinuous blur), and both the image and the psf can be recovered under the presence of high noise level. Finally, we remark that psf's without sharp edges, e.g., Gaussian blur, can also be identified through the TV approach 
650 4 |a Journal Article 
700 1 |a Wong, C K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 7(1998), 3 vom: 30., Seite 370-5  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:7  |g year:1998  |g number:3  |g day:30  |g pages:370-5 
856 4 0 |u http://dx.doi.org/10.1109/83.661187  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 7  |j 1998  |e 3  |b 30  |h 370-5