Nonlinear wavelet image processing : variational problems, compression, and noise removal through wavelet shrinkage

This paper examines the relationship between wavelet-based image processing algorithms and variational problems. Algorithms are derived as exact or approximate minimizers of variational problems; in particular, we show that wavelet shrinkage can be considered the exact minimizer of the following pro...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 7(1998), 3 vom: 30., Seite 319-35
1. Verfasser: Charnbolle, A (VerfasserIn)
Weitere Verfasser: DeVore, R A, Lee, N Y, Lucier, B J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1998
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM177632038
003 DE-627
005 20231223150624.0
007 cr uuu---uuuuu
008 231223s1998 xx |||||o 00| ||eng c
024 7 |a 10.1109/83.661182  |2 doi 
028 5 2 |a pubmed24n0592.xml 
035 |a (DE-627)NLM177632038 
035 |a (NLM)18276252 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Charnbolle, A  |e verfasserin  |4 aut 
245 1 0 |a Nonlinear wavelet image processing  |b variational problems, compression, and noise removal through wavelet shrinkage 
264 1 |c 1998 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.12.2009 
500 |a Date Revised 15.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper examines the relationship between wavelet-based image processing algorithms and variational problems. Algorithms are derived as exact or approximate minimizers of variational problems; in particular, we show that wavelet shrinkage can be considered the exact minimizer of the following problem. Given an image F defined on a square I, minimize over all g in the Besov space B(1)(1)(L (1)(I)) the functional |F-g|(L2)(I)(2)+lambda|g|(B(1)(1 )(L(1(I)))). We use the theory of nonlinear wavelet image compression in L(2)(I) to derive accurate error bounds for noise removal through wavelet shrinkage applied to images corrupted with i.i.d., mean zero, Gaussian noise. A new signal-to-noise ratio (SNR), which we claim more accurately reflects the visual perception of noise in images, arises in this derivation. We present extensive computations that support the hypothesis that near-optimal shrinkage parameters can be derived if one knows (or can estimate) only two parameters about an image F: the largest alpha for which FinEpsilon(q)(alpha )(L(q)(I)),1/q=alpha/2+1/2, and the norm |F|B(q)(alpha)(L(q)(I)). Both theoretical and experimental results indicate that our choice of shrinkage parameters yields uniformly better results than Donoho and Johnstone's VisuShrink procedure; an example suggests, however, that Donoho and Johnstone's SureShrink method, which uses a different shrinkage parameter for each dyadic level, achieves a lower error than our procedure 
650 4 |a Journal Article 
700 1 |a DeVore, R A  |e verfasserin  |4 aut 
700 1 |a Lee, N Y  |e verfasserin  |4 aut 
700 1 |a Lucier, B J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 7(1998), 3 vom: 30., Seite 319-35  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:7  |g year:1998  |g number:3  |g day:30  |g pages:319-35 
856 4 0 |u http://dx.doi.org/10.1109/83.661182  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 7  |j 1998  |e 3  |b 30  |h 319-35