A fractal vector quantizer for image coding

We investigate the relation between VQ (vector quantization) and fractal image coding techniques, and propose a novel algorithm for still image coding, based on fractal vector quantization (FVQ). In FVQ, the source image is approximated coarsely by fixed basis blocks, and the codebook is self-traine...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 7(1998), 11 vom: 30., Seite 1598-602
1. Verfasser: Kim, C S (VerfasserIn)
Weitere Verfasser: Kim, R C, Lee, S U
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1998
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Letter
LEADER 01000caa a22002652 4500
001 NLM177631759
003 DE-627
005 20250209055226.0
007 cr uuu---uuuuu
008 231223s1998 xx |||||o 00| ||eng c
024 7 |a 10.1109/83.725366  |2 doi 
028 5 2 |a pubmed25n0592.xml 
035 |a (DE-627)NLM177631759 
035 |a (NLM)18276224 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, C S  |e verfasserin  |4 aut 
245 1 2 |a A fractal vector quantizer for image coding 
264 1 |c 1998 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.12.2009 
500 |a Date Revised 15.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We investigate the relation between VQ (vector quantization) and fractal image coding techniques, and propose a novel algorithm for still image coding, based on fractal vector quantization (FVQ). In FVQ, the source image is approximated coarsely by fixed basis blocks, and the codebook is self-trained from the coarsely approximated image, rather than from an outside training set or the source image itself. Therefore, FVQ is capable of eliminating the redundancy in the codebook without any side information, in addition to exploiting the self-similarity in real images effectively. The computer simulation results demonstrate that the proposed algorithm provides better peak signal-to-noise ratio (PSNR) performance than most other fractal-based coders 
650 4 |a Letter 
700 1 |a Kim, R C  |e verfasserin  |4 aut 
700 1 |a Lee, S U  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 7(1998), 11 vom: 30., Seite 1598-602  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:7  |g year:1998  |g number:11  |g day:30  |g pages:1598-602 
856 4 0 |u http://dx.doi.org/10.1109/83.725366  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 7  |j 1998  |e 11  |b 30  |h 1598-602