An optimal quadtree-based motion estimation and motion-compensated interpolation scheme for video compression

We propose an optimal quadtree (QT)-based motion estimator for video compression. It is optimal in the sense that for a given bit budget for encoding the displacement vector field (DVF) and the QT segmentation, the scheme finds a DVF and a QT segmentation which minimizes the energy of the resulting...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 7(1998), 11 vom: 30., Seite 1505-23
1. Verfasser: Schuster, G M (VerfasserIn)
Weitere Verfasser: Katsaggelos, A K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1998
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We propose an optimal quadtree (QT)-based motion estimator for video compression. It is optimal in the sense that for a given bit budget for encoding the displacement vector field (DVF) and the QT segmentation, the scheme finds a DVF and a QT segmentation which minimizes the energy of the resulting displaced frame difference (DFD). We find the optimal QT decomposition and the optimal DVF jointly using the Lagrangian multiplier method and a multilevel dynamic program. We introduce a new, very fast convex search for the optimal Lagrangian multiplier lambda(*), which results in a very fast convergence of the Lagrangian multiplier method. The resulting DVF is spatially inhomogeneous, since large blocks are used in areas with simple motion and small blocks in areas with complex motion. We also propose a novel motion-compensated interpolation scheme which uses the same mathematical tools developed for the QT-based motion estimator. One of the advantages of this scheme is the globally optimal control of the tradeoff between the interpolation error energy and the DVF smoothness. Another advantage is that no interpolation of the DVF is required since we directly estimate the DVF and the QT-segmentation for the frame which needs to be interpolated. We present results with the proposed QT-based motion estimator which show that for the same DFD energy the proposed estimator uses about 25% fewer bits than the commonly used block matching algorithm. We also experimentally compare the interpolated frames using the proposed motion compensated interpolation scheme with the reconstructed original frames
Beschreibung:Date Completed 14.12.2009
Date Revised 15.02.2008
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/83.725359