Interfacial mobility and bonding strength in nanocomposite thin film membranes
The interfacial interaction strength and transition properties in a reverse selective thin film nanocomposite system, silica-poly[(trimethylsilyl)propyne] (SiO(x)-PTMSP), are investigated locally by heated tip atomic force microscopy. SiO(x)-PTMSP has recently been introduced as a new class of rever...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 24(2008), 7 vom: 01. Apr., Seite 3446-51 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2008
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | The interfacial interaction strength and transition properties in a reverse selective thin film nanocomposite system, silica-poly[(trimethylsilyl)propyne] (SiO(x)-PTMSP), are investigated locally by heated tip atomic force microscopy. SiO(x)-PTMSP has recently been introduced as a new class of reverse selective membrane materials with extraordinarily high permeability and selectivity (reverse selectivity). Here, we examine the thermal transition properties of the polymer matrix and the debonding strength between PTMSP and silica. Transitions at 330 degrees C were identified as degradation processes. Criteria for debonding were found to include polymer viscoelastic responses, particle size, embedding depth, scan speed, and frequency of impact. Probe-particle impact forces revealed a debonding energy of 2.6 J/m(2) and an impact force transition that occurs 30 degrees C below the degradation temperature in the neat polymer, confirming the presence of enhanced polymer mobility at the SiO(x)-PTMSP interface |
---|---|
Beschreibung: | Date Completed 05.05.2008 Date Revised 25.03.2008 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la7030076 |