Robust shape tracking with multiple models in ultrasound images

This paper addresses object tracking in ultrasound images using a robust multiple model tracker. The proposed tracker has the following features: 1) it uses multiple dynamic models to track the evolution of the object boundary, and 2) it models invalid observations (outliers), reducing their influen...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 17(2008), 3 vom: 14. März, Seite 392-406
1. Verfasser: Nascimento, Jacinto C (VerfasserIn)
Weitere Verfasser: Marques, Jorge S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:This paper addresses object tracking in ultrasound images using a robust multiple model tracker. The proposed tracker has the following features: 1) it uses multiple dynamic models to track the evolution of the object boundary, and 2) it models invalid observations (outliers), reducing their influence on the shape estimates. The problem considered in this paper is the tracking of the left ventricle which is known to be a challenging problem. The heart motion presents two phases (diastole and systole) with different dynamics, the multiple models used in this tracker try to solve this difficulty. In addition, ultrasound images are corrupted by strong multiplicative noise which prevents the use of standard deformable models. Robust estimation techniques are used to address this difficulty. The multiple model data association (MMDA) tracker proposed in this paper is based on a bank of nonlinear filters, organized in a tree structure. The algorithm determines which model is active at each instant of time and updates its state by propagating the probability distribution, using robust estimation techniques
Beschreibung:Date Completed 28.03.2008
Date Revised 13.02.2008
published: Print
Citation Status MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2007.915552