Generalized flooding and Multicue PDE-based image segmentation

Image segmentation remains an important, but hard-to-solve, problem since it appears to be application dependent with usually no a priori information available regarding the image structure. Moreover, the increasing demands of image analysis tasks in terms of segmentation results' quality intro...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 17(2008), 3 vom: 14. März, Seite 364-76
1. Verfasser: Sofou, Anastasia (VerfasserIn)
Weitere Verfasser: Maragos, Petros
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM177573317
003 DE-627
005 20231223150510.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2007.916156  |2 doi 
028 5 2 |a pubmed24n0592.xml 
035 |a (DE-627)NLM177573317 
035 |a (NLM)18270125 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sofou, Anastasia  |e verfasserin  |4 aut 
245 1 0 |a Generalized flooding and Multicue PDE-based image segmentation 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.03.2008 
500 |a Date Revised 13.02.2008 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Image segmentation remains an important, but hard-to-solve, problem since it appears to be application dependent with usually no a priori information available regarding the image structure. Moreover, the increasing demands of image analysis tasks in terms of segmentation results' quality introduce the necessity of employing multiple cues for improving image segmentation results. In this paper, we attempt to incorporate cues such as intensity contrast, region size, and texture in the segmentation procedure and derive improved results compared to using individual cues separately. We emphasize on the overall segmentation procedure, and we propose efficient simplification operators and feature extraction schemes, capable of quantifying important characteristics, like geometrical complexity, rate of change in local contrast variations, and orientation, that eventually favor the final segmentation result. Based on the well-known morphological paradigm of watershed transform segmentation, which exploits intensity contrast and region size criteria, we investigate its partial differential equation (PDE) formulation, and we extend it in order to satisfy various flooding criteria, thus making it applicable to a wider range of images. Going a step further, we introduce a segmentation scheme that couples contrast criteria in flooding with texture information. The modeling of the proposed scheme is done via PDEs and the efficient incorporation of the available contrast and texture information, is done by selecting an appropriate cartoon-texture image decomposition scheme. The proposed coupled segmentation scheme is driven by two separate image components: cartoon U (for contrast information) and texture component V. The performance of the proposed segmentation scheme is demonstrated through a complete set of experimental results and substantiated using quantitative and qualitative criteria 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Maragos, Petros  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 17(2008), 3 vom: 14. März, Seite 364-76  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:17  |g year:2008  |g number:3  |g day:14  |g month:03  |g pages:364-76 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2007.916156  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 17  |j 2008  |e 3  |b 14  |c 03  |h 364-76