Stratification approach for 3-D euclidean reconstruction of nonrigid objects from uncalibrated image sequences

This paper addresses the problem of 3-D reconstruction of nonrigid objects from uncalibrated image sequences. Under the assumption of affine camera and that the nonrigid object is composed of a rigid part and a deformation part, we propose a stratification approach to recover the structure of nonrig...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1996. - 38(2008), 1 vom: 14. Feb., Seite 90-101
1. Verfasser: Wang, Guanghui (VerfasserIn)
Weitere Verfasser: Wu, Q M Jonathan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:This paper addresses the problem of 3-D reconstruction of nonrigid objects from uncalibrated image sequences. Under the assumption of affine camera and that the nonrigid object is composed of a rigid part and a deformation part, we propose a stratification approach to recover the structure of nonrigid objects by first reconstructing the structure in affine space and then upgrading it to the Euclidean space. The novelty and main features of the method lies in several aspects. First, we propose a deformation weight constraint to the problem and prove the invariability between the recovered structure and shape bases under this constraint. The constraint was not observed by previous studies. Second, we propose a constrained power factorization algorithm to recover the deformation structure in affine space. The algorithm overcomes some limitations of a previous singular-value-decomposition-based method. It can even work with missing data in the tracking matrix. Third, we propose to separate the rigid features from the deformation ones in 3-D affine space, which makes the detection more accurate and robust. The stratification matrix is estimated from the rigid features, which may relax the influence of large tracking errors in the deformation part. Extensive experiments on synthetic data and real sequences validate the proposed method and show improvements over existing solutions
Beschreibung:Date Completed 14.03.2008
Date Revised 13.02.2008
published: Print
Citation Status MEDLINE
ISSN:1941-0492
DOI:10.1109/TSMCB.2007.910534