Motional capacitance of layered piezoelectric thickness-mode resonators

The Butterworth-Van Dyke equivalent circuit for description of the electrical behavior of piezoelectric bulk resonators is considered. The motional capacitance, C(1), in the circuit characterizes the strength of piezoelectric excitability of a vibration mode. For layered one-dimensional (1-D) struct...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 38(1991), 3 vom: 28., Seite 199-206
1. Verfasser: Schmid, M (VerfasserIn)
Weitere Verfasser: Benes, E, Burger, W, Kravchenko, V
Format: Aufsatz
Sprache:English
Veröffentlicht: 1991
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM17754919X
003 DE-627
005 20231223150441.0
007 tu
008 231223s1991 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0592.xml 
035 |a (DE-627)NLM17754919X 
035 |a (NLM)18267576 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Schmid, M  |e verfasserin  |4 aut 
245 1 0 |a Motional capacitance of layered piezoelectric thickness-mode resonators 
264 1 |c 1991 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 12.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The Butterworth-Van Dyke equivalent circuit for description of the electrical behavior of piezoelectric bulk resonators is considered. The motional capacitance, C(1), in the circuit characterizes the strength of piezoelectric excitability of a vibration mode. For layered one-dimensional (1-D) structures this parameter can be calculated from the admittance given by the transfer matrix description of H. Nowotny and E. Benes (1987). Introducing the equivalent area of a vibration mode, the calculation is generalized for the three-dimensional (3-D) case of thickness-mode vibration amplitudes varying only slowly in the lateral directions. Detailed formulae are given for the case of singly rotated quartz crystals or ultrasonic transducers with additional layers on one or two sides. Good agreement of the calculated C (1) with experimental data is shown for mass-loaded planoconvex AT-cut quartz crystals 
650 4 |a Journal Article 
700 1 |a Benes, E  |e verfasserin  |4 aut 
700 1 |a Burger, W  |e verfasserin  |4 aut 
700 1 |a Kravchenko, V  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 38(1991), 3 vom: 28., Seite 199-206  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnns 
773 1 8 |g volume:38  |g year:1991  |g number:3  |g day:28  |g pages:199-206 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 1991  |e 3  |b 28  |h 199-206