Nonlinear filtering by threshold decomposition

A new threshold decomposition architecture is introduced to implement stack filters. The architecture is also generalized to a new class of nonlinear filters known as threshold decomposition (TD) filters which are shown to be equivalent to the class of L1-filters under certain conditions. Another ne...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 8(1999), 7 vom: 28., Seite 925-33
Auteur principal: Lin, J H (Auteur)
Autres auteurs: Ansari, N, Li, J
Format: Article en ligne
Langue:English
Publié: 1999
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177548487
003 DE-627
005 20250209053954.0
007 cr uuu---uuuuu
008 231223s1999 xx |||||o 00| ||eng c
024 7 |a 10.1109/83.772235  |2 doi 
028 5 2 |a pubmed25n0592.xml 
035 |a (DE-627)NLM177548487 
035 |a (NLM)18267505 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lin, J H  |e verfasserin  |4 aut 
245 1 0 |a Nonlinear filtering by threshold decomposition 
264 1 |c 1999 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.12.2009 
500 |a Date Revised 12.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A new threshold decomposition architecture is introduced to implement stack filters. The architecture is also generalized to a new class of nonlinear filters known as threshold decomposition (TD) filters which are shown to be equivalent to the class of L1-filters under certain conditions. Another new class of filters known as linear and order statistic (LOS) filters result from the intersection of the class of TD and L1-filters. Performance comparisons among several filters are then presented. It was found that TD is compatible with L1, LOS, and linear filters in suppressing Gaussian noise, and is superior in suppressing salt-and-pepper noise. LOS filters, however, provide a better compromise in performance and complexity 
650 4 |a Journal Article 
700 1 |a Ansari, N  |e verfasserin  |4 aut 
700 1 |a Li, J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 8(1999), 7 vom: 28., Seite 925-33  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:8  |g year:1999  |g number:7  |g day:28  |g pages:925-33 
856 4 0 |u http://dx.doi.org/10.1109/83.772235  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 8  |j 1999  |e 7  |b 28  |h 925-33