Bayesian and regularization methods for hyperparameter estimation in image restoration

In this paper, we propose the application of the hierarchical Bayesian paradigm to the image restoration problem. We derive expressions for the iterative evaluation of the two hyperparameters applying the evidence and maximum a posteriori (MAP) analysis within the hierarchical Bayesian paradigm. We...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 8(1999), 2 vom: 28., Seite 231-46
1. Verfasser: Molina, R (VerfasserIn)
Weitere Verfasser: Katsaggelos, A K, Mateos, J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1999
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177548134
003 DE-627
005 20250209053952.0
007 cr uuu---uuuuu
008 231223s1999 xx |||||o 00| ||eng c
024 7 |a 10.1109/83.743857  |2 doi 
028 5 2 |a pubmed25n0592.xml 
035 |a (DE-627)NLM177548134 
035 |a (NLM)18267470 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Molina, R  |e verfasserin  |4 aut 
245 1 0 |a Bayesian and regularization methods for hyperparameter estimation in image restoration 
264 1 |c 1999 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.12.2009 
500 |a Date Revised 12.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we propose the application of the hierarchical Bayesian paradigm to the image restoration problem. We derive expressions for the iterative evaluation of the two hyperparameters applying the evidence and maximum a posteriori (MAP) analysis within the hierarchical Bayesian paradigm. We show analytically that the analysis provided by the evidence approach is more realistic and appropriate than the MAP approach for the image restoration problem. We furthermore study the relationship between the evidence and an iterative approach resulting from the set theoretic regularization approach for estimating the two hyperparameters, or their ratio, defined as the regularization parameter. Finally the proposed algorithms are tested experimentally 
650 4 |a Journal Article 
700 1 |a Katsaggelos, A K  |e verfasserin  |4 aut 
700 1 |a Mateos, J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 8(1999), 2 vom: 28., Seite 231-46  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:8  |g year:1999  |g number:2  |g day:28  |g pages:231-46 
856 4 0 |u http://dx.doi.org/10.1109/83.743857  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 8  |j 1999  |e 2  |b 28  |h 231-46