Object classification in 3-D images using alpha-trimmed mean radial basis function network

We propose a pattern classification based approach for simultaneous three-dimensional (3-D) object modeling and segmentation in image volumes. The 3-D objects are described as a set of overlapping ellipsoids. The segmentation relies on the geometrical model and graylevel statistics. The characterist...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 8(1999), 12 vom: 28., Seite 1744-56
1. Verfasser: Bors, A G (VerfasserIn)
Weitere Verfasser: Pitas, I
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1999
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM177547944
003 DE-627
005 20231223150439.0
007 cr uuu---uuuuu
008 231223s1999 xx |||||o 00| ||eng c
024 7 |a 10.1109/83.806620  |2 doi 
028 5 2 |a pubmed24n0592.xml 
035 |a (DE-627)NLM177547944 
035 |a (NLM)18267451 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bors, A G  |e verfasserin  |4 aut 
245 1 0 |a Object classification in 3-D images using alpha-trimmed mean radial basis function network 
264 1 |c 1999 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.06.2010 
500 |a Date Revised 12.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose a pattern classification based approach for simultaneous three-dimensional (3-D) object modeling and segmentation in image volumes. The 3-D objects are described as a set of overlapping ellipsoids. The segmentation relies on the geometrical model and graylevel statistics. The characteristic parameters of the ellipsoids and of the graylevel statistics are embedded in a radial basis function (RBF) network and they are found by means of unsupervised training. A new robust training algorithm for RBF networks based on alpha-trimmed mean statistics is employed in this study. The extension of the Hough transform algorithm in the 3-D space by employing a spherical coordinate system is used for ellipsoidal center estimation. We study the performance of the proposed algorithm and we present results when segmenting a stack of microscopy images 
650 4 |a Journal Article 
700 1 |a Pitas, I  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 8(1999), 12 vom: 28., Seite 1744-56  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:8  |g year:1999  |g number:12  |g day:28  |g pages:1744-56 
856 4 0 |u http://dx.doi.org/10.1109/83.806620  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 8  |j 1999  |e 12  |b 28  |h 1744-56