Regularized total least squares approach for nonconvolutional linear inverse problems

In this correspondence, a solution is developed for the regularized total least squares (RTLS) estimate in linear inverse problems where the linear operator is nonconvolutional. Our approach is based on a Rayleigh quotient (RQ) formulation of the TLS problem, and we accomplish regularization by modi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 8(1999), 11 vom: 28., Seite 1657-61
1. Verfasser: Zhu, W (VerfasserIn)
Weitere Verfasser: Wang, Y, Galatsanos, N P, Zhang, J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1999
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Letter
LEADER 01000caa a22002652 4500
001 NLM177547871
003 DE-627
005 20250209053950.0
007 cr uuu---uuuuu
008 231223s1999 xx |||||o 00| ||eng c
024 7 |a 10.1109/83.799895  |2 doi 
028 5 2 |a pubmed25n0592.xml 
035 |a (DE-627)NLM177547871 
035 |a (NLM)18267442 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, W  |e verfasserin  |4 aut 
245 1 0 |a Regularized total least squares approach for nonconvolutional linear inverse problems 
264 1 |c 1999 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.12.2009 
500 |a Date Revised 12.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this correspondence, a solution is developed for the regularized total least squares (RTLS) estimate in linear inverse problems where the linear operator is nonconvolutional. Our approach is based on a Rayleigh quotient (RQ) formulation of the TLS problem, and we accomplish regularization by modifying the RQ function to enforce a smooth solution. A conjugate gradient algorithm is used to minimize the modified RQ function. As an example, the proposed approach has been applied to the perturbation equation encountered in optical tomography. Simulation results show that this method provides more stable and accurate solutions than the regularized least squares and a previously reported total least squares approach, also based on the RQ formulation 
650 4 |a Letter 
700 1 |a Wang, Y  |e verfasserin  |4 aut 
700 1 |a Galatsanos, N P  |e verfasserin  |4 aut 
700 1 |a Zhang, J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 8(1999), 11 vom: 28., Seite 1657-61  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:8  |g year:1999  |g number:11  |g day:28  |g pages:1657-61 
856 4 0 |u http://dx.doi.org/10.1109/83.799895  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 8  |j 1999  |e 11  |b 28  |h 1657-61