A wavelet-based analysis of fractal image compression

Why does fractal image compression work? What is the implicit image model underlying fractal block coding? How can we characterize the types of images for which fractal block coders will work well? These are the central issues we address. We introduce a new wavelet-based framework for analyzing bloc...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 7(1998), 2 vom: 28., Seite 141-54
1. Verfasser: Davis, G M (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1998
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177547359
003 DE-627
005 20250209053947.0
007 cr uuu---uuuuu
008 231223s1998 xx |||||o 00| ||eng c
024 7 |a 10.1109/83.660992  |2 doi 
028 5 2 |a pubmed25n0592.xml 
035 |a (DE-627)NLM177547359 
035 |a (NLM)18267389 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Davis, G M  |e verfasserin  |4 aut 
245 1 2 |a A wavelet-based analysis of fractal image compression 
264 1 |c 1998 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 12.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Why does fractal image compression work? What is the implicit image model underlying fractal block coding? How can we characterize the types of images for which fractal block coders will work well? These are the central issues we address. We introduce a new wavelet-based framework for analyzing block-based fractal compression schemes. Within this framework we are able to draw upon insights from the well-established transform coder paradigm in order to address the issue of why fractal block coders work. We show that fractal block coders of the form introduced by Jacquin (1992) are Haar wavelet subtree quantization schemes. We examine a generalization of the schemes to smooth wavelets with additional vanishing moments. The performance of our generalized coder is comparable to the best results in the literature for a Jacquin-style coding scheme. Our wavelet framework gives new insight into the convergence properties of fractal block coders, and it leads us to develop an unconditionally convergent scheme with a fast decoding algorithm. Our experiments with this new algorithm indicate that fractal coders derive much of their effectiveness from their ability to efficiently represent wavelet zero trees. Finally, our framework reveals some of the fundamental limitations of current fractal compression schemes 
650 4 |a Journal Article 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 7(1998), 2 vom: 28., Seite 141-54  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:7  |g year:1998  |g number:2  |g day:28  |g pages:141-54 
856 4 0 |u http://dx.doi.org/10.1109/83.660992  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 7  |j 1998  |e 2  |b 28  |h 141-54