A pyramid approach to subpixel registration based on intensity

We present an automatic subpixel registration algorithm that minimizes the mean square intensity difference between a reference and a test data set, which can be either images (two-dimensional) or volumes (three-dimensional). It uses an explicit spline representation of the images in conjunction wit...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 7(1998), 1 vom: 28., Seite 27-41
1. Verfasser: Thévenaz, P (VerfasserIn)
Weitere Verfasser: Ruttimann, U E, Unser, M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1998
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM177547235
003 DE-627
005 20231223150438.0
007 cr uuu---uuuuu
008 231223s1998 xx |||||o 00| ||eng c
024 7 |a 10.1109/83.650848  |2 doi 
028 5 2 |a pubmed24n0592.xml 
035 |a (DE-627)NLM177547235 
035 |a (NLM)18267377 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Thévenaz, P  |e verfasserin  |4 aut 
245 1 2 |a A pyramid approach to subpixel registration based on intensity 
264 1 |c 1998 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.12.2009 
500 |a Date Revised 08.04.2022 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present an automatic subpixel registration algorithm that minimizes the mean square intensity difference between a reference and a test data set, which can be either images (two-dimensional) or volumes (three-dimensional). It uses an explicit spline representation of the images in conjunction with spline processing, and is based on a coarse-to-fine iterative strategy (pyramid approach). The minimization is performed according to a new variation (ML*) of the Marquardt-Levenberg algorithm for nonlinear least-square optimization. The geometric deformation model is a global three-dimensional (3-D) affine transformation that can be optionally restricted to rigid-body motion (rotation and translation), combined with isometric scaling. It also includes an optional adjustment of image contrast differences. We obtain excellent results for the registration of intramodality positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) data. We conclude that the multiresolution refinement strategy is more robust than a comparable single-stage method, being less likely to be trapped into a false local optimum. In addition, our improved version of the Marquardt-Levenberg algorithm is faster 
650 4 |a Journal Article 
700 1 |a Ruttimann, U E  |e verfasserin  |4 aut 
700 1 |a Unser, M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 7(1998), 1 vom: 28., Seite 27-41  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:7  |g year:1998  |g number:1  |g day:28  |g pages:27-41 
856 4 0 |u http://dx.doi.org/10.1109/83.650848  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 7  |j 1998  |e 1  |b 28  |h 27-41