Fuzzy inference neural network for fuzzy model tuning

In fuzzy modeling, it is relatively easy to manually define rough fuzzy rules for a target system by intuition. It is, however, time-consuming and difficult to fine-tune them to improve their behavior. This paper describes a tuning method for fuzzy models which is applicable regardless of the form o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1996. - 26(1996), 4 vom: 15., Seite 637-45
1. Verfasser: Lee, K M (VerfasserIn)
Weitere Verfasser: Kwak, D H, Hyung, L K
Format: Aufsatz
Sprache:English
Veröffentlicht: 1996
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM17750529X
003 DE-627
005 20250209050808.0
007 tu
008 231223s1996 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0592.xml 
035 |a (DE-627)NLM17750529X 
035 |a (NLM)18263063 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lee, K M  |e verfasserin  |4 aut 
245 1 0 |a Fuzzy inference neural network for fuzzy model tuning 
264 1 |c 1996 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 11.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In fuzzy modeling, it is relatively easy to manually define rough fuzzy rules for a target system by intuition. It is, however, time-consuming and difficult to fine-tune them to improve their behavior. This paper describes a tuning method for fuzzy models which is applicable regardless of the form of fuzzy rules and the used defuzzification method. For this purpose, this paper proposes a fuzzy neural network model which can embody fuzzy models. The proposed model provides the functions to perform fuzzy inference and to tune the parameters for the shape of antecedent linguistic terms, the relative importance degrees of rules, and the relative importance degrees of antecedent linguistic terms in rules. In addition, to show its applicability, we perform some experiments and present the results 
650 4 |a Journal Article 
700 1 |a Kwak, D H  |e verfasserin  |4 aut 
700 1 |a Hyung, L K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society  |d 1996  |g 26(1996), 4 vom: 15., Seite 637-45  |w (DE-627)NLM098252887  |x 1941-0492  |7 nnns 
773 1 8 |g volume:26  |g year:1996  |g number:4  |g day:15  |g pages:637-45 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 1996  |e 4  |b 15  |h 637-45