Simplification of fuzzy-neural systems using similarity analysis

This paper presents a fuzzy neural network system (FNNS) for implementing fuzzy inference systems. In the FNNS, a fuzzy similarity measure for fuzzy rules is proposed to eliminate redundant fuzzy logical rules, so that the number of rules in the resulting fuzzy inference system will be reduced. More...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1996. - 26(1996), 2 vom: 15., Seite 344-54
1. Verfasser: Chao, C T (VerfasserIn)
Weitere Verfasser: Chen, Y J, Teng, C C
Format: Aufsatz
Sprache:English
Veröffentlicht: 1996
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:This paper presents a fuzzy neural network system (FNNS) for implementing fuzzy inference systems. In the FNNS, a fuzzy similarity measure for fuzzy rules is proposed to eliminate redundant fuzzy logical rules, so that the number of rules in the resulting fuzzy inference system will be reduced. Moreover, a fuzzy similarity measure for fuzzy sets that indicates the degree to which two fuzzy sets are equal is applied to combine similar input linguistic term nodes. Thus we obtain a method for reducing the complexity of a fuzzy neural network. We also design a new and efficient on-line initialization method for choosing the initial parameters of the FNNS. A computer simulation is presented to illustrate the performance and applicability of the proposed FNNS. The result indicates that the FNNS still has desirable performance under fewer fuzzy logical rules and adjustable parameters
Beschreibung:Date Completed 02.10.2012
Date Revised 11.02.2008
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1941-0492