Wavelet thresholding for multiple noisy image copies

This correspondence addresses the recovery of an image from its multiple noisy copies. The standard method is to compute the weighted average of these copies. Since the wavelet thresholding technique has been shown to effectively denoise a single noisy copy, we consider in this paper combining the t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 9(2000), 9 vom: 15., Seite 1631-5
1. Verfasser: Chang, S G (VerfasserIn)
Weitere Verfasser: Yu, B, Vetterli, M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2000
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Letter
LEADER 01000caa a22002652 4500
001 NLM17750465X
003 DE-627
005 20250209050802.0
007 cr uuu---uuuuu
008 231223s2000 xx |||||o 00| ||eng c
024 7 |a 10.1109/83.862646  |2 doi 
028 5 2 |a pubmed25n0592.xml 
035 |a (DE-627)NLM17750465X 
035 |a (NLM)18262999 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chang, S G  |e verfasserin  |4 aut 
245 1 0 |a Wavelet thresholding for multiple noisy image copies 
264 1 |c 2000 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.06.2010 
500 |a Date Revised 11.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This correspondence addresses the recovery of an image from its multiple noisy copies. The standard method is to compute the weighted average of these copies. Since the wavelet thresholding technique has been shown to effectively denoise a single noisy copy, we consider in this paper combining the two operations of averaging and thresholding. Because thresholding is a nonlinear technique, averaging then thresholding or thresholding then averaging produce different estimators. By modeling the signal wavelet coefficients as Laplacian distributed and the noise as Gaussian, our investigation finds the optimal ordering to depend on the number of available copies and on the signal-to-noise ratio. We then propose thresholds that are nearly optimal under the assumed model for each ordering. With the optimal and near-optimal thresholds, the two methods yield similar performance, and both show considerable improvement over merely averaging 
650 4 |a Letter 
700 1 |a Yu, B  |e verfasserin  |4 aut 
700 1 |a Vetterli, M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 9(2000), 9 vom: 15., Seite 1631-5  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:9  |g year:2000  |g number:9  |g day:15  |g pages:1631-5 
856 4 0 |u http://dx.doi.org/10.1109/83.862646  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 9  |j 2000  |e 9  |b 15  |h 1631-5