|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM17750448X |
003 |
DE-627 |
005 |
20231223150346.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2000 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/83.855440
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0592.xml
|
035 |
|
|
|a (DE-627)NLM17750448X
|
035 |
|
|
|a (NLM)18262982
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Borş, A G
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Prediction and tracking of moving objects in image sequences
|
264 |
|
1 |
|c 2000
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 02.10.2012
|
500 |
|
|
|a Date Revised 11.02.2008
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a We employ a prediction model for moving object velocity and location estimation derived from Bayesian theory. The optical flow of a certain moving object depends on the history of its previous values. A joint optical flow estimation and moving object segmentation algorithm is used for the initialization of the tracking algorithm. The segmentation of the moving objects is determined by appropriately classifying the unlabeled and the occluding regions. Segmentation and optical flow tracking is used for predicting future frames
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Pitas, I
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 9(2000), 8 vom: 15., Seite 1441-5
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:9
|g year:2000
|g number:8
|g day:15
|g pages:1441-5
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/83.855440
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 9
|j 2000
|e 8
|b 15
|h 1441-5
|