Rank-based decompositions of morphological templates

Methods for matrix decomposition have found numerous applications in image processing, in particular for the problem of template decomposition. Since existing matrix decomposition techniques are mainly concerned with the linear domain, we consider it timely to investigate matrix decomposition techni...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 9(2000), 8 vom: 15., Seite 1420-30
Auteur principal: Sussner, P (Auteur)
Autres auteurs: Ritter, G X
Format: Article en ligne
Langue:English
Publié: 2000
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177504447
003 DE-627
005 20250209050800.0
007 cr uuu---uuuuu
008 231223s2000 xx |||||o 00| ||eng c
024 7 |a 10.1109/83.855436  |2 doi 
028 5 2 |a pubmed25n0592.xml 
035 |a (DE-627)NLM177504447 
035 |a (NLM)18262978 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sussner, P  |e verfasserin  |4 aut 
245 1 0 |a Rank-based decompositions of morphological templates 
264 1 |c 2000 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 11.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Methods for matrix decomposition have found numerous applications in image processing, in particular for the problem of template decomposition. Since existing matrix decomposition techniques are mainly concerned with the linear domain, we consider it timely to investigate matrix decomposition techniques in the nonlinear domain with applications in image processing. The mathematical basis for these investigations is the new theory of rank within minimax algebra. Thus far, only minimax decompositions of rank 1 and rank 2 matrices into outer product expansions are known to the image processing community. We derive a heuristic algorithm for the decomposition of matrices having arbitrary rank 
650 4 |a Journal Article 
700 1 |a Ritter, G X  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 9(2000), 8 vom: 15., Seite 1420-30  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:9  |g year:2000  |g number:8  |g day:15  |g pages:1420-30 
856 4 0 |u http://dx.doi.org/10.1109/83.855436  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 9  |j 2000  |e 8  |b 15  |h 1420-30