|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM177504447 |
003 |
DE-627 |
005 |
20250209050800.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2000 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/83.855436
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0592.xml
|
035 |
|
|
|a (DE-627)NLM177504447
|
035 |
|
|
|a (NLM)18262978
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Sussner, P
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Rank-based decompositions of morphological templates
|
264 |
|
1 |
|c 2000
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 02.10.2012
|
500 |
|
|
|a Date Revised 11.02.2008
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Methods for matrix decomposition have found numerous applications in image processing, in particular for the problem of template decomposition. Since existing matrix decomposition techniques are mainly concerned with the linear domain, we consider it timely to investigate matrix decomposition techniques in the nonlinear domain with applications in image processing. The mathematical basis for these investigations is the new theory of rank within minimax algebra. Thus far, only minimax decompositions of rank 1 and rank 2 matrices into outer product expansions are known to the image processing community. We derive a heuristic algorithm for the decomposition of matrices having arbitrary rank
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Ritter, G X
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 9(2000), 8 vom: 15., Seite 1420-30
|w (DE-627)NLM09821456X
|x 1057-7149
|7 nnns
|
773 |
1 |
8 |
|g volume:9
|g year:2000
|g number:8
|g day:15
|g pages:1420-30
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/83.855436
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 9
|j 2000
|e 8
|b 15
|h 1420-30
|