Efficient image gradient based vehicle localization

This paper reports novel algorithms for the efficient localization and recognition of traffic in traffic scenes. The algorithms eliminate the need for explicit symbolic feature extraction and matching. The pose and class of an object is determined by a form of voting and one-dimensional (1-D) correl...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 9(2000), 8 vom: 15., Seite 1343-56
1. Verfasser: Tan, T N (VerfasserIn)
Weitere Verfasser: Baker, K D
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2000
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM177504382
003 DE-627
005 20231223150346.0
007 cr uuu---uuuuu
008 231223s2000 xx |||||o 00| ||eng c
024 7 |a 10.1109/83.855430  |2 doi 
028 5 2 |a pubmed24n0592.xml 
035 |a (DE-627)NLM177504382 
035 |a (NLM)18262972 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tan, T N  |e verfasserin  |4 aut 
245 1 0 |a Efficient image gradient based vehicle localization 
264 1 |c 2000 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 11.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper reports novel algorithms for the efficient localization and recognition of traffic in traffic scenes. The algorithms eliminate the need for explicit symbolic feature extraction and matching. The pose and class of an object is determined by a form of voting and one-dimensional (1-D) correlations based directly on image gradient data, which can be computed "on the fly." The algorithms are therefore very well suited to real-time implementation. The algorithms make use of two a priori sources of knowledge about the scene and the objects expected: (1) the ground-plane constraint and (2) the fact that the overall shape of road vehicles is strongly rectilinear. Additional efficiency is derived from making the weak perspective assumption. These assumptions are valid in the road traffic application domain. The algorithms are demonstrated and tested using routine outdoor traffic images. Success with a variety of vehicles in several traffic scenes demonstrates the efficiency and robustness of context-based image understanding in road traffic scene analysis. The limitations of the algorithms are also addressed in the paper 
650 4 |a Journal Article 
700 1 |a Baker, K D  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 9(2000), 8 vom: 15., Seite 1343-56  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:9  |g year:2000  |g number:8  |g day:15  |g pages:1343-56 
856 4 0 |u http://dx.doi.org/10.1109/83.855430  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 9  |j 2000  |e 8  |b 15  |h 1343-56