Optimization of mutual information for multiresolution image registration

We propose a new method for the intermodal registration of images using a criterion known as mutual information. Our main contribution is an optimizer that we specifically designed for this criterion. We show that this new optimizer is well adapted to a multiresolution approach because it typically...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 9(2000), 12 vom: 15., Seite 2083-99
1. Verfasser: Thévenaz, P (VerfasserIn)
Weitere Verfasser: Unser, M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2000
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM177504153
003 DE-627
005 20231223150346.0
007 cr uuu---uuuuu
008 231223s2000 xx |||||o 00| ||eng c
024 7 |a 10.1109/83.887976  |2 doi 
028 5 2 |a pubmed24n0592.xml 
035 |a (DE-627)NLM177504153 
035 |a (NLM)18262946 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Thévenaz, P  |e verfasserin  |4 aut 
245 1 0 |a Optimization of mutual information for multiresolution image registration 
264 1 |c 2000 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.06.2010 
500 |a Date Revised 11.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose a new method for the intermodal registration of images using a criterion known as mutual information. Our main contribution is an optimizer that we specifically designed for this criterion. We show that this new optimizer is well adapted to a multiresolution approach because it typically converges in fewer criterion evaluations than other optimizers. We have built a multiresolution image pyramid, along with an interpolation process, an optimizer, and the criterion itself, around the unifying concept of spline-processing. This ensures coherence in the way we model data and yields good performance. We have tested our approach in a variety of experimental conditions and report excellent results. We claim an accuracy of about a hundredth of a pixel under ideal conditions. We are also robust since the accuracy is still about a tenth of a pixel under very noisy conditions. In addition, a blind evaluation of our results compares very favorably to the work of several other researchers 
650 4 |a Journal Article 
700 1 |a Unser, M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 9(2000), 12 vom: 15., Seite 2083-99  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:9  |g year:2000  |g number:12  |g day:15  |g pages:2083-99 
856 4 0 |u http://dx.doi.org/10.1109/83.887976  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 9  |j 2000  |e 12  |b 15  |h 2083-99