A generalized fuzzy mathematical morphology and its application in robust 2-D and 3-D object representation

In this paper, the generalized fuzzy mathematical morphology (GFMM) is proposed, based on a novel definition of the fuzzy inclusion indicator (FII). FII is a fuzzy set used as a measure of the inclusion of a fuzzy set into another, that is proposed to be a fuzzy set. It is proven that the FII obeys...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 9(2000), 10 vom: 15., Seite 1798-810
1. Verfasser: Chatzis, V (VerfasserIn)
Weitere Verfasser: Pitas, I
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2000
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM177503858
003 DE-627
005 20231223150345.0
007 cr uuu---uuuuu
008 231223s2000 xx |||||o 00| ||eng c
024 7 |a 10.1109/83.869190  |2 doi 
028 5 2 |a pubmed24n0592.xml 
035 |a (DE-627)NLM177503858 
035 |a (NLM)18262917 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chatzis, V  |e verfasserin  |4 aut 
245 1 2 |a A generalized fuzzy mathematical morphology and its application in robust 2-D and 3-D object representation 
264 1 |c 2000 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.12.2009 
500 |a Date Revised 11.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, the generalized fuzzy mathematical morphology (GFMM) is proposed, based on a novel definition of the fuzzy inclusion indicator (FII). FII is a fuzzy set used as a measure of the inclusion of a fuzzy set into another, that is proposed to be a fuzzy set. It is proven that the FII obeys a set of axioms, which are proposed to be extensions of the known axioms that any inclusion indicator should obey, and which correspond to the desirable properties of any mathematical morphology operation. The GFMM provides a very powerful and flexible tool for morphological operations. The binary and grayscale mathematical morphologies can be considered as special cases of the proposed GFMM. An application for robust skeletonization and shape decomposition of two-dimensional (2-D) and three-dimensional (3-D) objects is presented. Simulation examples show that the object reconstruction from their skeletal subsets that can be achieved by using the GFMM is better than by using the binary mathematical morphology in most cases. Furthermore, the use of the GFMM for skeletonization and shape decomposition preserves the shape and the location of the skeletal subsets and spines 
650 4 |a Journal Article 
700 1 |a Pitas, I  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 9(2000), 10 vom: 15., Seite 1798-810  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:9  |g year:2000  |g number:10  |g day:15  |g pages:1798-810 
856 4 0 |u http://dx.doi.org/10.1109/83.869190  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 9  |j 2000  |e 10  |b 15  |h 1798-810