Hierarchical Bayesian image restoration from partially known blurs

In this paper, we examine the restoration problem when the point-spread function (PSF) of the degradation system is partially known. For this problem, the PSF is assumed to be the sum of a known deterministic and an unknown random component. This problem has been examined before; however, in most pr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 9(2000), 10 vom: 15., Seite 1784-97
1. Verfasser: Galatsanos, N P (VerfasserIn)
Weitere Verfasser: Mesarovic, V Z, Molina, R, Katsaggelos, A K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2000
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM17750384X
003 DE-627
005 20250209050754.0
007 cr uuu---uuuuu
008 231223s2000 xx |||||o 00| ||eng c
024 7 |a 10.1109/83.869189  |2 doi 
028 5 2 |a pubmed25n0592.xml 
035 |a (DE-627)NLM17750384X 
035 |a (NLM)18262916 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Galatsanos, N P  |e verfasserin  |4 aut 
245 1 0 |a Hierarchical Bayesian image restoration from partially known blurs 
264 1 |c 2000 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.12.2009 
500 |a Date Revised 11.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we examine the restoration problem when the point-spread function (PSF) of the degradation system is partially known. For this problem, the PSF is assumed to be the sum of a known deterministic and an unknown random component. This problem has been examined before; however, in most previous works the problem of estimating the parameters that define the restoration filters was not addressed. In this paper, two iterative algorithms that simultaneously restore the image and estimate the parameters of the restoration filter are proposed using evidence analysis (EA) within the hierarchical Bayesian framework. We show that the restoration step of the first of these algorithms is in effect almost identical to the regularized constrained total least-squares (RCTLS) filter, while the restoration step of the second is identical to the linear minimum mean square-error (LMMSE) filter for this problem. Therefore, in this paper we provide a solution to the parameter estimation problem of the RCTLS filter. We further provide an alternative approach to the expectation-maximization (EM) framework to derive a parameter estimation algorithm for the LMMSE filter. These iterative algorithms are derived in the discrete Fourier transform (DFT) domain; therefore, they are computationally efficient even for large images. Numerical experiments are presented that test and compare the proposed algorithms 
650 4 |a Journal Article 
700 1 |a Mesarovic, V Z  |e verfasserin  |4 aut 
700 1 |a Molina, R  |e verfasserin  |4 aut 
700 1 |a Katsaggelos, A K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 9(2000), 10 vom: 15., Seite 1784-97  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:9  |g year:2000  |g number:10  |g day:15  |g pages:1784-97 
856 4 0 |u http://dx.doi.org/10.1109/83.869189  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 9  |j 2000  |e 10  |b 15  |h 1784-97