Neural classifiers and statistical pattern recognition : applications for currently established links

Recent research has linked backpropagation (BP) and radial basis function (RBF) network classifiers, trained by minimizing the standard mean square error (MSE), to two main topics in statistical pattern recognition (SPR), namely the Bayes decision theory and discriminant analysis. However, so far, t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1996. - 27(1997), 3 vom: 15., Seite 488-97
1. Verfasser: Osman, H (VerfasserIn)
Weitere Verfasser: Fahmy, M M
Format: Aufsatz
Sprache:English
Veröffentlicht: 1997
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177437324
003 DE-627
005 20250209045153.0
007 tu
008 231223s1997 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0592.xml 
035 |a (DE-627)NLM177437324 
035 |a (NLM)18255887 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Osman, H  |e verfasserin  |4 aut 
245 1 0 |a Neural classifiers and statistical pattern recognition  |b applications for currently established links 
264 1 |c 1997 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 07.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recent research has linked backpropagation (BP) and radial basis function (RBF) network classifiers, trained by minimizing the standard mean square error (MSE), to two main topics in statistical pattern recognition (SPR), namely the Bayes decision theory and discriminant analysis. However, so far, the establishment of these links has resulted in only a few practical applications for training, using, and evaluating these classifiers. The paper aims at providing more of these applications. It first illustrates that while training a linear output BP network, the explicit utilization of the network discriminant capability leads to an improvement in its classification performance. Then, for linear output BP and RBF networks, the paper defines a new generalization measure that provides information about the closeness of the network classification performance to the optimal performance. The estimation procedure of this measure is described and its use as an efficient criterion for terminating the learning algorithm and choosing the network topology is explained. The paper finally proposes an upper bound on the number of hidden units needed by an RBF network classifier to achieve an arbitrary value of the minimized MSE. Experimental results are presented to validate all proposed applications 
650 4 |a Journal Article 
700 1 |a Fahmy, M M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society  |d 1996  |g 27(1997), 3 vom: 15., Seite 488-97  |w (DE-627)NLM098252887  |x 1941-0492  |7 nnns 
773 1 8 |g volume:27  |g year:1997  |g number:3  |g day:15  |g pages:488-97 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 1997  |e 3  |b 15  |h 488-97