Size reduction by interpolation in fuzzy rule bases

Fuzzy control is at present still the most important area of real applications for fuzzy theory. It is a generalized form of expert control using fuzzy sets in the definition of vague/linguistic predicates, modeling a system by If...then rules. In the classical approaches it is necessary that observ...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1996. - 27(1997), 1 vom: 15., Seite 14-25
1. Verfasser: Koczy, L T (VerfasserIn)
Weitere Verfasser: Hirota, K
Format: Aufsatz
Sprache:English
Veröffentlicht: 1997
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177436816
003 DE-627
005 20250209045149.0
007 tu
008 231223s1997 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0592.xml 
035 |a (DE-627)NLM177436816 
035 |a (NLM)18255836 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Koczy, L T  |e verfasserin  |4 aut 
245 1 0 |a Size reduction by interpolation in fuzzy rule bases 
264 1 |c 1997 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 07.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Fuzzy control is at present still the most important area of real applications for fuzzy theory. It is a generalized form of expert control using fuzzy sets in the definition of vague/linguistic predicates, modeling a system by If...then rules. In the classical approaches it is necessary that observations on the actual state of the system partly match (fire) one or several rules in the model (fired rules), and the conclusion is calculated by the evaluation of the degrees of matching and the fired rules. Interpolation helps reduce the complexity as it allows rule bases with gaps. Various interpolation approaches are shown. It is proposed that dense rule bases should be reduced so that only the minimal necessary number of rules remain still containing the essential information in the original base, and all other rules are replaced by the interpolation algorithm that however can recover them with a certain accuracy prescribed before reduction. The interpolation method used for demonstration is the Lagrange method supplying the best fitting minimal degree polynomial. The paper concentrates on the reduction technique that is rather independent from the style of the interpolation model, but cannot be given in the form of a tractable algorithm. An example is shown to illustrate possible results and difficulties with the method 
650 4 |a Journal Article 
700 1 |a Hirota, K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society  |d 1996  |g 27(1997), 1 vom: 15., Seite 14-25  |w (DE-627)NLM098252887  |x 1941-0492  |7 nnns 
773 1 8 |g volume:27  |g year:1997  |g number:1  |g day:15  |g pages:14-25 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 1997  |e 1  |b 15  |h 14-25