Stroke-model-based character extraction from gray-level document images

Global gray-level thresholding techniques such as Otsu's method, and local gray-level thresholding techniques such as edge-based segmentation or the adaptive thresholding method are powerful in extracting character objects from simple or slowly varying backgrounds. However, they are found to be...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 10(2001), 8 vom: 15., Seite 1152-61
1. Verfasser: Ye, X (VerfasserIn)
Weitere Verfasser: Cheriet, M, Suen, C Y
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2001
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Global gray-level thresholding techniques such as Otsu's method, and local gray-level thresholding techniques such as edge-based segmentation or the adaptive thresholding method are powerful in extracting character objects from simple or slowly varying backgrounds. However, they are found to be insufficient when the backgrounds include sharply varying contours or fonts in different sizes. A stroke-model is proposed to depict the local features of character objects as double-edges in a predefined size. This model enables us to detect thin connected components selectively, while ignoring relatively large backgrounds that appear complex. Meanwhile, since the stroke width restriction is fully factored in, the proposed technique can be used to extract characters in predefined font sizes. To process large volumes of documents efficiently, a hybrid method is proposed for character extraction from various backgrounds. Using the measurement of class separability to differentiate images with simple backgrounds from those with complex backgrounds, the hybrid method can process documents with different backgrounds by applying the appropriate methods. Experiments on extracting handwriting from a check image, as well as machine-printed characters from scene images demonstrate the effectiveness of the proposed model
Beschreibung:Date Completed 15.12.2009
Date Revised 07.02.2008
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1057-7149
DOI:10.1109/83.935031