Multiply-rooted multiscale models for large-scale estimation

Divide-and-conquer or multiscale techniques have become popular for solving large statistical estimation problems. The methods rely on defining a state which conditionally decorrelates the large problem into multiple subproblems, each more straightforward than the original. However this step cannot...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 10(2001), 11 vom: 15., Seite 1676-86
1. Verfasser: Fieguth, P W (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2001
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177433620
003 DE-627
005 20250209045119.0
007 cr uuu---uuuuu
008 231223s2001 xx |||||o 00| ||eng c
024 7 |a 10.1109/83.967396  |2 doi 
028 5 2 |a pubmed25n0592.xml 
035 |a (DE-627)NLM177433620 
035 |a (NLM)18255510 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fieguth, P W  |e verfasserin  |4 aut 
245 1 0 |a Multiply-rooted multiscale models for large-scale estimation 
264 1 |c 2001 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.06.2010 
500 |a Date Revised 07.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Divide-and-conquer or multiscale techniques have become popular for solving large statistical estimation problems. The methods rely on defining a state which conditionally decorrelates the large problem into multiple subproblems, each more straightforward than the original. However this step cannot be carried out for asymptotically large problems since the dimension of the state grows without bound, leading to problems of computational complexity and numerical stability. In this paper, we propose a new approach to hierarchical estimation in which the conditional decorrelation of arbitrarily large regions is avoided, and the problem is instead addressed piece-by-piece. The approach possesses promising attributes: it is not a local method-the estimate at every point is based on all measurements; it is numerically stable for problems of arbitrary size; and the approach retains the benefits of the multiscale framework on which it is based: a broad class of statistical models, a stochastic realization theory, an algorithm to calculate statistical likelihoods, and the ability to fuse local and nonlocal measurements 
650 4 |a Journal Article 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 10(2001), 11 vom: 15., Seite 1676-86  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:10  |g year:2001  |g number:11  |g day:15  |g pages:1676-86 
856 4 0 |u http://dx.doi.org/10.1109/83.967396  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 10  |j 2001  |e 11  |b 15  |h 1676-86