Synchronicity of thermogenic activity, alternative pathway respiratory flux, AOX protein content, and carbohydrates in receptacle tissues of sacred lotus during floral development

The relationships between heat production, alternative oxidase (AOX) pathway flux, AOX protein, and carbohydrates during floral development in Nelumbo nucifera (Gaertn.) were investigated. Three distinct physiological phases were identified: pre-thermogenic, thermogenic, and post-thermogenic. The sh...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 59(2008), 3 vom: 05., Seite 705-14
1. Verfasser: Grant, Nicole M (VerfasserIn)
Weitere Verfasser: Miller, Rebecca E, Watling, Jennifer R, Robinson, Sharon A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Mitochondrial Proteins Plant Proteins Starch 9005-25-8 Oxidoreductases EC 1.- alternative oxidase Electron Transport Complex IV EC 1.9.3.1
Beschreibung
Zusammenfassung:The relationships between heat production, alternative oxidase (AOX) pathway flux, AOX protein, and carbohydrates during floral development in Nelumbo nucifera (Gaertn.) were investigated. Three distinct physiological phases were identified: pre-thermogenic, thermogenic, and post-thermogenic. The shift to thermogenic activity was associated with a rapid, 10-fold increase in AOX protein. Similarly, a rapid decrease in AOX protein occurred post-thermogenesis. This synchronicity between AOX protein and thermogenic activity contrasts with other thermogenic plants where AOX protein increases some days prior to heating. AOX protein in thermogenic receptacles was significantly higher than in post-thermogenic and leaf tissues. Stable oxygen isotope measurements confirmed that the increased respiratory flux supporting thermogenesis was largely via the AOX, with little or no contribution from the cytochrome oxidase pathway. During the thermogenic phase, no significant relationship was found between AOX protein content and either heating or AOX flux, suggesting that regulation is likely to be post-translational. Further, no evidence of substrate limitation was found; starch accumulated during the early stages of floral development, peaking in thermogenic receptacles, before declining by 89% in post-thermogenic receptacles. Whilst coarse regulation of AOX flux occurs via protein synthesis, the ability to thermoregulate probably involves precise regulation of AOX protein, most probably by effectors such as alpha-keto acids
Beschreibung:Date Completed 22.05.2008
Date Revised 17.11.2011
published: Print-Electronic
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erm333