A comparison of computational color constancy algorithms--part II : experiments with image data

We test a number of the leading computational color constancy algorithms using a comprehensive set of images. These were of 33 different scenes under 11 different sources representative of common illumination conditions. The algorithms studied include two gray world methods, a version of the Retinex...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 11(2002), 9 vom: 15., Seite 985-96
1. Verfasser: Barnard, Kobus (VerfasserIn)
Weitere Verfasser: Martin, Lindsay, Coath, Adam, Funt, Brian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2002
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM177377275
003 DE-627
005 20231223150058.0
007 cr uuu---uuuuu
008 231223s2002 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2002.802529  |2 doi 
028 5 2 |a pubmed24n0591.xml 
035 |a (DE-627)NLM177377275 
035 |a (NLM)18249721 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Barnard, Kobus  |e verfasserin  |4 aut 
245 1 2 |a A comparison of computational color constancy algorithms--part II  |b experiments with image data 
264 1 |c 2002 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.05.2010 
500 |a Date Revised 05.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We test a number of the leading computational color constancy algorithms using a comprehensive set of images. These were of 33 different scenes under 11 different sources representative of common illumination conditions. The algorithms studied include two gray world methods, a version of the Retinex method, several variants of Forsyth's gamut-mapping method, Cardei et al.'s neural net method, and Finlayson et al.'s Color by Correlation method. We discuss a number of issues in applying color constancy ideas to image data, and study in depth the effect of different preprocessing strategies. We compare the performance of the algorithms on image data with their performance on synthesized data. All data used for this study are available online at http://www.cs.sfu.ca/(tilde)color/data, and implementations for most of the algorithms are also available (http://www.cs.sfu.ca/(tilde)color/code). Experiments with synthesized data (part one of this paper) suggested that the methods which emphasize the use of the input data statistics, specifically color by correlation and the neural net algorithm, are potentially the most effective at estimating the chromaticity of the scene illuminant. Unfortunately, we were unable to realize comparable performance on real images. Here exploiting pixel intensity proved to be more beneficial than exploiting the details of image chromaticity statistics, and the three-dimensional (3-D) gamut-mapping algorithms gave the best performance 
650 4 |a Journal Article 
700 1 |a Martin, Lindsay  |e verfasserin  |4 aut 
700 1 |a Coath, Adam  |e verfasserin  |4 aut 
700 1 |a Funt, Brian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 11(2002), 9 vom: 15., Seite 985-96  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:11  |g year:2002  |g number:9  |g day:15  |g pages:985-96 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2002.802529  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 11  |j 2002  |e 9  |b 15  |h 985-96