Stochastic differential equations and geometric flows

In previous years, curve evolution, applied to a single contour or to the level sets of an image via partial differential equations, has emerged as an important tool in image processing and computer vision. Curve evolution techniques have been utilized in problems such as image smoothing, segmentati...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 11(2002), 12 vom: 15., Seite 1405-16
1. Verfasser: Unal, Gozde (VerfasserIn)
Weitere Verfasser: Krim, Hamid, Yezzi, Anthony
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2002
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM177377178
003 DE-627
005 20231223150058.0
007 cr uuu---uuuuu
008 231223s2002 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2002.804568  |2 doi 
028 5 2 |a pubmed24n0591.xml 
035 |a (DE-627)NLM177377178 
035 |a (NLM)18249709 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Unal, Gozde  |e verfasserin  |4 aut 
245 1 0 |a Stochastic differential equations and geometric flows 
264 1 |c 2002 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.12.2009 
500 |a Date Revised 05.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In previous years, curve evolution, applied to a single contour or to the level sets of an image via partial differential equations, has emerged as an important tool in image processing and computer vision. Curve evolution techniques have been utilized in problems such as image smoothing, segmentation, and shape analysis. We give a local stochastic interpretation of the basic curve smoothing equation, the so called geometric heat equation, and show that this evolution amounts to a tangential diffusion movement of the particles along the contour. Moreover, assuming that a priori information about the shapes of objects in an image is known, we present modifications of the geometric heat equation designed to preserve certain features in these shapes while removing noise. We also show how these new flows may be applied to smooth noisy curves without destroying their larger scale features, in contrast to the original geometric heat flow which tends to circularize any closed curve 
650 4 |a Journal Article 
700 1 |a Krim, Hamid  |e verfasserin  |4 aut 
700 1 |a Yezzi, Anthony  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 11(2002), 12 vom: 15., Seite 1405-16  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:11  |g year:2002  |g number:12  |g day:15  |g pages:1405-16 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2002.804568  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 11  |j 2002  |e 12  |b 15  |h 1405-16