Likelihood maximization approach to image registration

A likelihood maximization approach to image registration is developed in this paper. It is assumed that the voxel values in two images in registration are probabilistically related. The principle of maximum likelihood is then exploited to find the optimal registration: the likelihood that given imag...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 11(2002), 12 vom: 15., Seite 1417-26
1. Verfasser: Zhu, Yang-Ming (VerfasserIn)
Weitere Verfasser: Cochoff, Steven M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2002
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM17737716X
003 DE-627
005 20231223150058.0
007 cr uuu---uuuuu
008 231223s2002 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2002.806240  |2 doi 
028 5 2 |a pubmed24n0591.xml 
035 |a (DE-627)NLM17737716X 
035 |a (NLM)18249710 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Yang-Ming  |e verfasserin  |4 aut 
245 1 0 |a Likelihood maximization approach to image registration 
264 1 |c 2002 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.12.2009 
500 |a Date Revised 05.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A likelihood maximization approach to image registration is developed in this paper. It is assumed that the voxel values in two images in registration are probabilistically related. The principle of maximum likelihood is then exploited to find the optimal registration: the likelihood that given image f, one has image g and given image g, one has image f is optimized with respect to registration parameters. All voxel pairs in the overlapping volume or a portion of it can be used to compute the likelihood. A knowledge-based method and a self-consistent technique are proposed to obtain the probability relation. In the knowledge-based method, prior knowledge of the distribution of voxel pairs in two registered images is assumed, while such knowledge is not required in the self-consistent method. The accuracy and robustness of the likelihood maximization approach is validated by single modality registration of single photon emission computed tomographic (SPECT) images and magnetic resonance (MR) images and by multimodality registration (MR/SPECT). The results demonstrate that the performance of the likelihood maximization approach is comparable to that of the mutual information maximization technique. Finally the relationship between the likelihood approach and the entropy, conditional entropy, and mutual information approaches is discussed 
650 4 |a Journal Article 
700 1 |a Cochoff, Steven M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 11(2002), 12 vom: 15., Seite 1417-26  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:11  |g year:2002  |g number:12  |g day:15  |g pages:1417-26 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2002.806240  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 11  |j 2002  |e 12  |b 15  |h 1417-26