Template matching based object recognition with unknown geometric parameters

In this paper, we examine the problem of locating an object in an image when size and rotation are unknown. Previous work has shown that with known geometric parameters, an image restoration method can be useful by estimating a delta function at the object location. When the geometric parameters are...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 11(2002), 12 vom: 15., Seite 1385-96
1. Verfasser: Dufour, Roger M (VerfasserIn)
Weitere Verfasser: Miller, Eric L, Galatsanos, Nikolas P
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2002
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM177377143
003 DE-627
005 20231223150058.0
007 cr uuu---uuuuu
008 231223s2002 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2002.806245  |2 doi 
028 5 2 |a pubmed24n0591.xml 
035 |a (DE-627)NLM177377143 
035 |a (NLM)18249707 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dufour, Roger M  |e verfasserin  |4 aut 
245 1 0 |a Template matching based object recognition with unknown geometric parameters 
264 1 |c 2002 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.12.2009 
500 |a Date Revised 05.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we examine the problem of locating an object in an image when size and rotation are unknown. Previous work has shown that with known geometric parameters, an image restoration method can be useful by estimating a delta function at the object location. When the geometric parameters are unknown, this method becomes impractical because the likelihood surface to be minimized across size and rotation has numerous local minima and areas of zero gradient. We propose a new approach where a smooth approximation of the template is used to minimize a well-behaved likelihood surface. A coarse-to-fine approximation of the original template using a diffusion-like equation is used to create a library of templates. Using this library, we can successively perform minimizations which are locally well-behaved. As detail is added to the template, the likelihood surface gains local minima, but previous estimates place us within a well-behaved "bowl" around the global minimum, leading to an accurate estimate. Numerical experiments are shown which verify the value of this approach for a wide range of values of the geometric parameters 
650 4 |a Journal Article 
700 1 |a Miller, Eric L  |e verfasserin  |4 aut 
700 1 |a Galatsanos, Nikolas P  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 11(2002), 12 vom: 15., Seite 1385-96  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:11  |g year:2002  |g number:12  |g day:15  |g pages:1385-96 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2002.806245  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 11  |j 2002  |e 12  |b 15  |h 1385-96