Two-dimensional phase unwrapping using robust derivative estimation and adaptive integration

The adaptive integration (ADI) method for two-dimensional (2-D) phase unwrapping is presented. The method uses an algorithm for noise robust estimation of partial derivatives, followed by a noise robust adaptive integration process. The ADI method can easily unwrap phase images with moderate noise l...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 11(2002), 10 vom: 15., Seite 1192-200
1. Verfasser: Strand, Jarle (VerfasserIn)
Weitere Verfasser: Taxt, Torfinn
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2002
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Comment Journal Article
LEADER 01000caa a22002652 4500
001 NLM177376988
003 DE-627
005 20250209043825.0
007 cr uuu---uuuuu
008 231223s2002 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2002.804567  |2 doi 
028 5 2 |a pubmed25n0591.xml 
035 |a (DE-627)NLM177376988 
035 |a (NLM)18249691 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Strand, Jarle  |e verfasserin  |4 aut 
245 1 0 |a Two-dimensional phase unwrapping using robust derivative estimation and adaptive integration 
264 1 |c 2002 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.12.2009 
500 |a Date Revised 05.02.2008 
500 |a published: Print 
500 |a CommentOn: IEEE Trans Image Process. 1999;8(3):375-86. doi: 10.1109/83.748892. - PMID 18262880 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The adaptive integration (ADI) method for two-dimensional (2-D) phase unwrapping is presented. The method uses an algorithm for noise robust estimation of partial derivatives, followed by a noise robust adaptive integration process. The ADI method can easily unwrap phase images with moderate noise levels, and the resulting images are congruent modulo 2pi with the observed, wrapped, input images. In a quantitative evaluation, both the ADI and the BLS methods (Strand et al.) were better than the least-squares methods of Ghiglia and Romero (GR), and of Marroquin and Rivera (MRM). In a qualitative evaluation, the ADI, the BLS, and a conjugate gradient version of the MRM method (MRMCG), were all compared using a synthetic image with shear, using 115 magnetic resonance images, and using 22 fiber-optic interferometry images. For the synthetic image and the interferometry images, the ADI method gave consistently visually better results than the other methods. For the MR images, the MRMCG method was best, and the ADI method second best. The ADI method was less sensitive to the mask definition and the block size than the BLS method, and successfully unwrapped images with shears that were not marked in the masks. The computational requirements of the ADI method for images of nonrectangular objects were comparable to only two iterations of many least-squares-based methods (e.g., GR). We believe the ADI method provides a powerful addition to the ensemble of tools available for 2-D phase unwrapping 
650 4 |a Comment 
650 4 |a Journal Article 
700 1 |a Taxt, Torfinn  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 11(2002), 10 vom: 15., Seite 1192-200  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:11  |g year:2002  |g number:10  |g day:15  |g pages:1192-200 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2002.804567  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 11  |j 2002  |e 10  |b 15  |h 1192-200