MOMS : maximal-order interpolation of minimal support

We consider the problem of interpolating a signal using a linear combination of shifted versions of a compactly-supported basis function phi(x). We first give the expression for the cases of phi's that have minimal support for a given accuracy (also known as "approximation order"). Th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 10(2001), 7 vom: 15., Seite 1069-80
1. Verfasser: Blu, T (VerfasserIn)
Weitere Verfasser: Thévenaz, P, Unser, M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2001
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM177376872
003 DE-627
005 20231223150057.0
007 cr uuu---uuuuu
008 231223s2001 xx |||||o 00| ||eng c
024 7 |a 10.1109/83.931101  |2 doi 
028 5 2 |a pubmed24n0591.xml 
035 |a (DE-627)NLM177376872 
035 |a (NLM)18249680 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Blu, T  |e verfasserin  |4 aut 
245 1 0 |a MOMS  |b maximal-order interpolation of minimal support 
264 1 |c 2001 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.05.2010 
500 |a Date Revised 05.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We consider the problem of interpolating a signal using a linear combination of shifted versions of a compactly-supported basis function phi(x). We first give the expression for the cases of phi's that have minimal support for a given accuracy (also known as "approximation order"). This class of functions, which we call maximal-order-minimal-support functions (MOMS) is made of linear combinations of the B-spline of the same order and of its derivatives. We provide an explicit form of the MOMS that maximizes the approximation accuracy when the step-size is small enough. We compute the sampling gain obtained by using these optimal basis functions over the splines of the same order. We show that it is already substantial for small orders and that it further increases with the approximation order L. When L is large, this sampling gain becomes linear; more specifically, its exact asymptotic expression is 2/(pie)L. Since the optimal functions are continuous, but not differentiable, for even orders, and even only piecewise continuous for odd orders, our result implies that regularity has little to do with approximating performance. These theoretical findings are corroborated by experimental evidence that involves compounded rotations of images 
650 4 |a Journal Article 
700 1 |a Thévenaz, P  |e verfasserin  |4 aut 
700 1 |a Unser, M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 10(2001), 7 vom: 15., Seite 1069-80  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:10  |g year:2001  |g number:7  |g day:15  |g pages:1069-80 
856 4 0 |u http://dx.doi.org/10.1109/83.931101  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 10  |j 2001  |e 7  |b 15  |h 1069-80