Segmentation of bright targets using wavelets and adaptive thresholding

A general systematic method for the detection and segmentation of bright targets is developed. We use the term "bright target" to mean a connected, cohesive object which has an average intensity distribution above that of the rest of the image. We develop an analytic model for the segmenta...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 10(2001), 7 vom: 15., Seite 1020-30
1. Verfasser: Zhang, X P (VerfasserIn)
Weitere Verfasser: Desai, M D
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2001
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177376821
003 DE-627
005 20250209043823.0
007 cr uuu---uuuuu
008 231223s2001 xx |||||o 00| ||eng c
024 7 |a 10.1109/83.931096  |2 doi 
028 5 2 |a pubmed25n0591.xml 
035 |a (DE-627)NLM177376821 
035 |a (NLM)18249675 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, X P  |e verfasserin  |4 aut 
245 1 0 |a Segmentation of bright targets using wavelets and adaptive thresholding 
264 1 |c 2001 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.05.2010 
500 |a Date Revised 05.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A general systematic method for the detection and segmentation of bright targets is developed. We use the term "bright target" to mean a connected, cohesive object which has an average intensity distribution above that of the rest of the image. We develop an analytic model for the segmentation of targets, which uses a novel multiresolution analysis in concert with a Bayes classifier to identify the possible target areas. A method is developed which adaptively chooses thresholds to segment targets from background, by using a multiscale analysis of the image probability density function (PDF). A performance analysis based on a Gaussian distribution model is used to show that the obtained adaptive threshold is often close to the Bayes threshold. The method has proven robust even when the image distribution is unknown. Examples are presented to demonstrate the efficiency of the technique on a variety of targets 
650 4 |a Journal Article 
700 1 |a Desai, M D  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 10(2001), 7 vom: 15., Seite 1020-30  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:10  |g year:2001  |g number:7  |g day:15  |g pages:1020-30 
856 4 0 |u http://dx.doi.org/10.1109/83.931096  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 10  |j 2001  |e 7  |b 15  |h 1020-30