Embedding fuzzy mechanisms and knowledge in box-type reinforcement learning controllers

In this paper, we report our study on embedding fuzzy mechanisms and knowledge into box-type reinforcement learning controllers. One previous approach for incorporating fuzzy mechanisms can only achieve one successful run out of nine tests compared to eight successful runs in a nonfuzzy learning con...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1996. - 32(2002), 5 vom: 15., Seite 645-53
1. Verfasser: Su, Shun-Feng (VerfasserIn)
Weitere Verfasser: Hsieh, Sheng-Hsiung
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2002
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177332093
003 DE-627
005 20250209042713.0
007 cr uuu---uuuuu
008 231223s2002 xx |||||o 00| ||eng c
024 7 |a 10.1109/TSMCB.2002.1033183  |2 doi 
028 5 2 |a pubmed25n0591.xml 
035 |a (DE-627)NLM177332093 
035 |a (NLM)18244868 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Su, Shun-Feng  |e verfasserin  |4 aut 
245 1 0 |a Embedding fuzzy mechanisms and knowledge in box-type reinforcement learning controllers 
264 1 |c 2002 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 04.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we report our study on embedding fuzzy mechanisms and knowledge into box-type reinforcement learning controllers. One previous approach for incorporating fuzzy mechanisms can only achieve one successful run out of nine tests compared to eight successful runs in a nonfuzzy learning control scheme. After analysis, the credit assignment problem and the weighting domination problem are identified. Furthermore, the use of fuzzy mechanisms in temporal difference seems to play a negative factor. Modifications to overcome those problems are proposed. Furthermore, several remedies are employed in that approach. The effects of those remedies applied to our learning scheme are presented and possible variations are also studied. Finally, the issue of incorporating knowledge into reinforcement learning systems is studied. From our simulations, it is concluded that the use of knowledge for the control network can provide good learning results, but the use of knowledge for the evaluation network alone seems unable to provide any significant advantages. Furthermore, we also employ Makarovic's (1988) rules as the knowledge for the initial setting of the control network. In our study, the rules are separated into four groups to avoid the ordering problem 
650 4 |a Journal Article 
700 1 |a Hsieh, Sheng-Hsiung  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society  |d 1996  |g 32(2002), 5 vom: 15., Seite 645-53  |w (DE-627)NLM098252887  |x 1941-0492  |7 nnns 
773 1 8 |g volume:32  |g year:2002  |g number:5  |g day:15  |g pages:645-53 
856 4 0 |u http://dx.doi.org/10.1109/TSMCB.2002.1033183  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2002  |e 5  |b 15  |h 645-53