Dynamic optimal learning rates of a certain class of fuzzy neural networks and its applications with genetic algorithm

The stability analysis of the learning rate for a two-layer neural network (NN) is discussed first by minimizing the total squared error between the actual and desired outputs for a set of training vectors. The stable and optimal learning rate, in the sense of maximum error reduction, for each itera...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1996. - 31(2001), 3 vom: 15., Seite 467-75
1. Verfasser: Wang, C H (VerfasserIn)
Weitere Verfasser: Liu, H L, Lin, C T
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2001
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177331550
003 DE-627
005 20250209042708.0
007 cr uuu---uuuuu
008 231223s2001 xx |||||o 00| ||eng c
024 7 |a 10.1109/3477.931548  |2 doi 
028 5 2 |a pubmed25n0591.xml 
035 |a (DE-627)NLM177331550 
035 |a (NLM)18244813 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, C H  |e verfasserin  |4 aut 
245 1 0 |a Dynamic optimal learning rates of a certain class of fuzzy neural networks and its applications with genetic algorithm 
264 1 |c 2001 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 04.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The stability analysis of the learning rate for a two-layer neural network (NN) is discussed first by minimizing the total squared error between the actual and desired outputs for a set of training vectors. The stable and optimal learning rate, in the sense of maximum error reduction, for each iteration in the training (back propagation) process can therefore be found for this two-layer NN. It has also been proven in this paper that the dynamic stable learning rate for this two-layer NN must be greater than zero. Thus it Is guaranteed that the maximum error reduction can be achieved by choosing the optimal learning rate for the next training iteration. A dynamic fuzzy neural network (FNN) that consists of the fuzzy linguistic process as the premise part and the two-layer NN as the consequence part is then illustrated as an immediate application of our approach. Each part of this dynamic FNN has its own learning rate for training purpose. A genetic algorithm is designed to allow a more efficient tuning process of the two learning rates of the FNN. The objective of the genetic algorithm is to reduce the searching time by searching for only one learning rate, which is the learning rate of the premise part, in the FNN. The dynamic optimal learning rates of the two-layer NN can be found directly using our innovative approach. Several examples are fully illustrated and excellent results are obtained for the model car backing up problem and the identification of nonlinear first order and second order systems 
650 4 |a Journal Article 
700 1 |a Liu, H L  |e verfasserin  |4 aut 
700 1 |a Lin, C T  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society  |d 1996  |g 31(2001), 3 vom: 15., Seite 467-75  |w (DE-627)NLM098252887  |x 1941-0492  |7 nnns 
773 1 8 |g volume:31  |g year:2001  |g number:3  |g day:15  |g pages:467-75 
856 4 0 |u http://dx.doi.org/10.1109/3477.931548  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2001  |e 3  |b 15  |h 467-75