Integrated feature analysis and fuzzy rule-based system identification in a neuro-fuzzy paradigm

Most methods of fuzzy rule-based system identification (SI) either ignore feature analysis or do it in a separate phase. This paper proposes a novel neuro-fuzzy system that can simultaneously do feature analysis and SI in an integrated manner. It is a five-layered feed-forward network for realizing...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1996. - 31(2001), 3 vom: 15., Seite 391-400
1. Verfasser: Chakrborty, D (VerfasserIn)
Weitere Verfasser: Pal, N R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2001
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177331445
003 DE-627
005 20250209042707.0
007 cr uuu---uuuuu
008 231223s2001 xx |||||o 00| ||eng c
024 7 |a 10.1109/3477.931526  |2 doi 
028 5 2 |a pubmed25n0591.xml 
035 |a (DE-627)NLM177331445 
035 |a (NLM)18244802 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chakrborty, D  |e verfasserin  |4 aut 
245 1 0 |a Integrated feature analysis and fuzzy rule-based system identification in a neuro-fuzzy paradigm 
264 1 |c 2001 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 04.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Most methods of fuzzy rule-based system identification (SI) either ignore feature analysis or do it in a separate phase. This paper proposes a novel neuro-fuzzy system that can simultaneously do feature analysis and SI in an integrated manner. It is a five-layered feed-forward network for realizing a fuzzy rule-based system. The second layer of the net is the most important one, which along with fuzzification of the input also learns a modulator function for each input feature. This enables online selection of important features by the network. The system is so designed that learning maintains the nonnegative characteristic of certainty factors of rules. The proposed network is tested on both synthetic and real data sets and the performance is found to be quite satisfactory. To get an "optimal" network architecture and to eliminate conflicting rules, nodes and links are pruned and then the structure is retrained. The pruned network retains almost the same level of performance as that of the original one 
650 4 |a Journal Article 
700 1 |a Pal, N R  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society  |d 1996  |g 31(2001), 3 vom: 15., Seite 391-400  |w (DE-627)NLM098252887  |x 1941-0492  |7 nnns 
773 1 8 |g volume:31  |g year:2001  |g number:3  |g day:15  |g pages:391-400 
856 4 0 |u http://dx.doi.org/10.1109/3477.931526  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2001  |e 3  |b 15  |h 391-400