GA-based fuzzy reinforcement learning for control of a magnetic bearing system
This paper proposes a TD (temporal difference) and GA (genetic algorithm)-based reinforcement (TDGAR) learning method and applies it to the control of a real magnetic bearing system. The TDGAR learning scheme is a new hybrid GA, which integrates the TD prediction method and the GA to perform the rei...
Ausführliche Beschreibung
Bibliographische Detailangaben
Veröffentlicht in: | IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1996. - 30(2000), 2 vom: 15., Seite 276-89
|
1. Verfasser: |
Lin, C T
(VerfasserIn) |
Weitere Verfasser: |
Jou, C P |
Format: | Online-Aufsatz
|
Sprache: | English |
Veröffentlicht: |
2000
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
|
Schlagworte: | Journal Article |