Parameter estimation in Bayesian high-resolution image reconstruction with multisensors

In this paper, we consider the estimation of the unknown parameters for the problem of reconstructing a high-resolution image from multiple undersampled, shifted, degraded frames with subpixel displacement errors. We derive mathematical expressions for the iterative calculation of the maximum likeli...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 12(2003), 12 vom: 15., Seite 1655-67
1. Verfasser: Molina, Rafael (VerfasserIn)
Weitere Verfasser: Vega, Miguel, Abad, Javier, Katsaggelos, Aggelos K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2003
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:In this paper, we consider the estimation of the unknown parameters for the problem of reconstructing a high-resolution image from multiple undersampled, shifted, degraded frames with subpixel displacement errors. We derive mathematical expressions for the iterative calculation of the maximum likelihood estimate of the unknown parameters given the low resolution observed images. These iterative procedures require the manipulation of block-semi circulant (BSC) matrices, that is, block matrices with circulant blocks. We show how these BSC matrices can be easily manipulated in order to calculate the unknown parameters. Finally the proposed method is tested on real and synthetic images
Beschreibung:Date Completed 20.05.2010
Date Revised 04.02.2008
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2003.818117